
SAFARI Technical Report No. 2014-001 – March 13, 2014

The Heterogeneous Block Architecture
§†Chris Fallin †Chris Wilkerson §Onur Mutlu

cfallin@c1f.net chris.wilkerson@intel.com onur@cmu.edu

§Carnegie Mellon University †Intel Corporation

Abstract
This paper makes two new observations that lead to a new

heterogeneous core design. First, we observe that most serial
code exhibits fine-grained heterogeneity: at the scale of tens or
hundreds of instructions, regions of code fit different microar-
chitectures better (at the same point or at different points in
time). Second, we observe that by grouping contiguous regions
of instructions into blocks that are executed atomically, a core
can exploit this heterogeneity: atomicity allows each block to
be executed independently on its own execution backend that
fits its characteristics best.

Based on these observations, we propose a fine-grained
heterogeneous design that combines heterogeneous execution
backends into one core. Our core design, the heterogeneous
block architecture (HBA), breaks the program into blocks of
code, determines the best backend for each block, and special-
izes the block for that backend. As an initial, concrete design,
we combine out-of-order, VLIW, and in-order backends, using
simple heuristics to choose backends. We compare HBA to mul-
tiple baseline core designs (including monolithic out-of-order,
clustered out-of-order, in-order and a state-of-the-art heteroge-
neous core design) and show that HBA can provide significantly
better energy efficiency than all designs at similar performance.
Averaged across 184 traces from a wide variety of workloads,
HBA reduces core power by 36.4% and energy per instruc-
tion by 31.9% compared to a 4-wide out-of-order core. We
conclude that HBA provides a flexible substrate for exploiting
fine-grained heterogeneity, enabling new energy-performance
tradeoff points in core design.

1. Introduction
Core designs today face two competing goals. They must con-
tinue to improve single-thread (serial) performance, because
such performance is important for many algorithms and for
any application with serial bottlenecks [3, 53, 26]. Cores must
also improve energy efficiency because it has become a primary
limiter: datacenters are largely power-limited, so that improved
energy efficiency allows more servers and higher throughput,
while many consumer devices are battery-powered, so that
improved energy efficiency translates to longer battery life.

A primary difficulty in achieving both high performance and
high energy efficiency is that no single core microarchitecture is
the best design for both metrics for all programs. Any particular
design spends energy on some set of features (e.g., out-of-order
instruction scheduling, sophisticated branch prediction, or wide
pipeline width), but these features do not always yield improved
performance. As a result, a general-purpose core today is

usually a compromise: it is designed to meet some performance
objectives while remaining within a power envelope, but for
any given program, it is frequently not the most efficient design.

The difficulty in designing a good general-purpose core
arises because code is heterogeneous, both between and within
programs. In other words, each program has different char-
acteristics, and a single program may have different charac-
teristics in different regions of its code. To exploit this di-
versity, past works proposed core-level heterogeneity. These
heterogeneous designs either combine multiple separate cores
(e.g., [29, 22, 3, 20, 53, 7, 12, 26, 4, 56]), or else combine an in-
order pipeline and out-of-order pipeline with a shared frontend
in a single core [35]. Past works demonstrate energy-efficiency
improvements with usually small impact to performance.

This paper makes two key observations that motivate a new
way of building a heterogeneous core. Our first observation
is that applications have fine-grained heterogeneity. Prior work
has observed heterogeneity at a coarse granularity: for exam-
ple, programs have memory and compute phases, and such
phases can be exploited by migrating a thread to “big” cores
for compute-intensive phases and “little” cores for memory-
intensive phases [56, 35]. However, at a finer granularity (of
tens to hundreds of instructions), adjacent blocks of code of-
ten have different properties as well (as we will show). For
example, one block of code might have a consistent instruction
schedule across its dynamic execution instances in an OoO
machine, whereas neighboring blocks schedule each execution
differently depending on cache miss behavior. Such behavior
suggests the use of both dynamic and static schedulers. Migra-
tion of execution between separate cores or pipelines cannot
easily exploit this fine-grained property.

Our second observation is that a core can exploit fine-
grained heterogeneity if it splits code into atomic blocks and
executes each block on a separate execution backend, which in-
cludes functional units, local storage, and some form of instruc-
tion scheduling. In order to exploit fine-grained heterogeneity,
a core will need execution backends of multiple types, and the
core will need to specialize pieces of code for each backend.
By enforcing atomicity, or the property that a region (block)
of code either executes successfully or not at all, the core can
freely analyze and morph this block of code to fit a particular
backend. For example, atomicity allows the core to reorder in-
structions freely within the block. Atomic block-based design
allows execution backends to operate independently except for
a well-defined interface (liveins/liveouts) between blocks.

Based on these two key observations, we propose a fine-
grained heterogeneous core that dynamically forms user code

1

SAFARI Technical Report No. 2014-001 – March 13, 2014

into blocks, specializes those blocks to execute on the most
appropriate type of execution backend, and executes blocks on
these various backends. This core design serves as a general
substrate for fine-grained heterogeneity which can combine
many different types of execution backends. As an initial het-
erogeneous design, this paper evaluates a core which includes
out-of-order, VLIW, and in-order execution backends, and logic
to assign each block to a backend. Our design first executes
each block on the out-of-order execution backend, but monitors
schedule stability of the block over time. When a block of code
has an unchanging instruction schedule, indicating that instruc-
tion latencies are likely not variable, it is converted to a VLIW
or in-order block (depending on ILP), using the instruction
schedule recorded during out-of-order execution. When the
block again requires dynamic scheduling (determined based on
a simple stall-cycle statistic), it is converted to an out-of-order
block. At any given time, multiple backend types can be active
for different blocks.

Our major contributions are:
1. We design a fine-grained heterogeneous core which forms

atomic blocks of code and executes these blocks on out-of-
order, VLIW, and in-order backends, depending on the ob-
served instruction schedule stability and ILP of each block.

2. We propose mechanisms that enable blocks of code to be
executed on VLIW and in-order execution backends without
requiring static scheduling by leveraging dynamic information
from an out-of-order execution backend to produce a code
schedule at runtime.

3. Extensive evaluations of our core design in comparison to
an out-of-order core, a clustered-microarchitecture core [17],
and a state-of-the-art coarse-grained heterogeneous core [35]
demonstrate higher energy efficiency than all previous designs
across a variety of workloads. Our design reduces average
core power by 36.4% with 1% performance degradation over
the out-of-order baseline. In addition, our design provides a
flexible substrate for future heterogeneous designs, enabling
new power-performance tradeoff points in core design.

2. Motivation: Fine-Grained Heterogeneity

Our first major observation is that applications have fine-
grained heterogeneity. In this context, “fine-grained” in-
dicates regions of tens or hundreds of instructions. This
level of heterogeneity is quite distinct from larger program
phases [15, 50] that occur because a program switches between
wholly different tasks or modes. Fine-grained heterogeneity
occurs when small chunks of code have different characteristics
due to the particular instructions or dataflow in the chunks.

Fig. 1 represents this distinction graphically. The left half of
the figure depicts an application that has at least two phases:
a regular floating-point phase and a memory-bound pointer-
chasing phase. These phases occur at a scale of thousands
to millions of instructions. If we focus on one small portion
of the first phase, however, we see fine-grained heterogeneity.
The right half of the figure depicts a region tens of instructions
long within the floating point phase. In the first group of in-
structions, three of the four operations are independent and

can issue in parallel. All instructions in this group also have
constant, statically-known latencies. Hence, the small group
of instructions has high ILP and a consistent (unchanging) dy-
namic instruction schedule. The second instruction group also
has high ILP, but has variable scheduling due to intermittent
cache misses. Finally, the third instruction group has low ILP
due to a dependence chain. Overall, each small code region
within this single “regular floating point” phase has different
properties, and thus benefits from different core features.

Coarse-Grained
Heterogeneity

phase 1:
regular
floating-
point

{high ILP

stall

low ILP

phase 2:
pointer-
chasing

Fine-Grained
Heterogeneity

}

(1K-1M insns) (10-100 insns)

fadd r1,r2,r3
fadd r4,r5,r6
add r13,r14,8
fmul r0,r1,r4
...
...
ld r1,(r13)
 ^-MISSES LLC
add r13,r14,8
fadd r2,r1,r7
fadd r4,r5,r6
...
...
fadd r4,r1,r2
fadd r4,r4,r3
fadd r4,r4,r7
...

tim
e
 (in

stru
ctio

n
s)

}
high ILP,
stable
instruction
schedule

}
high ILP,
varying
instruction
schedule

{

}
low ILP,
stable
instruction
schedule

phase 3:
...

Figure 1: Coarse-grained vs. fine-grained heterogeneity.

To motivate our approach, we demonstrate the existence of a
particular code property, instruction schedule stability: some
regions of code always (or frequently) schedule in the same
order in the dynamic out-of-order scheduling logic. We also
demonstrate that this property varies greatly between different
nearby regions of code (hence, is fine-grained). To do this,
we analyze the behavior of a large set of benchmarks on a 4-
wide superscalar out-of-order core (§4 provides all parameters).
We observe the retired instruction stream and group these dy-
namic instructions into chunks of up to 16 µops each. Chunks
are broken at certain boundaries according to the heuristics in
§3.3.1. Then, for each chunk, we compare the actual dynamic
instruction schedule of that chunk to the schedule of the pre-
vious instance of the same (static) code. We record whether
the schedule was the same as or different from before. These
annotations, called “chunk types,” indicate the extent to which
each chunk has a stable schedule.

Fig. 2 shows the distribution of the “same” and “different”
chunk types, per benchmark, as a sorted curve. Many chunks
repeat prior instruction schedules. Hence, there is significant
opportunity to reuse schedules. Furthermore, there are many
applications (in the center of the plot) that exhibit a mix of be-
havior: between 20% and 80% of retired chunks of instructions
exhibit consistent schedules. Hence, individual applications
often have heterogeneous instruction schedule stability across
different regions of code. This observation suggests a core
design that can reuse instruction schedules for some code and
dynamically schedule other code.

Moreover, we observe that this heterogeneity exists between
nearby chunks in the dynamic instruction stream: in other
words, that there is fine-grained heterogeneity. We observe the
sequence of chunk types in retire order and group chunks into

2

SAFARI Technical Report No. 2014-001 – March 13, 2014

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

F
ra

ct
io

n
 o

f
D

y
n

am
ic

 C
o

d
e

C
h

u
n

k
s

Benchmark (Sorted by Y-axis Value)

different-schedule chunks

same-schedule chunks

Figure 2: Fraction of chunks in the instruction stream that have
a different schedule than their previous instance.

runs. One run is a consecutive series of chunks with the same
instruction schedule stability. We then accumulate the length
of all runs. The length of these runs indicates whether the
heterogeneity is coarse- or fine-grained. We find that almost
60% of runs are of length 1, and the histogram falls off rapidly
thereafter. In other words, the schedule stability of chunks of
instructions is often different even between temporally-adjacent
static regions of code. This behavior indicates fine-grained
heterogeneity.

This fine-grained heterogeneity exists within program phases.
It is thus distinct from coarse-grained (inter-program/inter-
phase) heterogeneity exploited by, e.g., heterogeneous mul-
ticores. Instead, it motivates a new approach: a single core that
can execute nearby chunks of code with different mechanisms
best suited for each chunk.

3. A Fine-Grained Heterogeneous Core
We introduce our new core design, HBA (Heterogeneous Block
Architecture), based on our observations so far.

3.1. High-Level Overview

Key Idea #1: Build a core that executes fine-grained blocks
of code on heterogeneous backends. As we demonstrated
in §2, application code is heterogeneous at not only coarse
but also fine granularity. We thus build a core that contains
many heterogeneous execution backends within a single core
to exploit this heterogeneity. The core groups the application’s
instructions into chunks (which we call blocks) and determines
the best type of execution backend for each block. Multiple
execution backends can be active simultaneously with different
chunks of code, and these backends communicate program
values directly.
Key Idea #2: Leverage block atomicity to allow block spe-
cialization. In order to allow for a block of code to be adapted
properly to a particular backend, the block of code must be
considered as a unit, isolated from the rest of the program. Our
second key idea is to impose atomicity on each block of code:
the core either commits each block’s side effects at once, or
throws away them all. Atomicity guarantees the core will see
an entire block; hence, it allows the use of backends that lever-
age code properties extracted once over the entire region (e.g.,
by reordering or rewriting instructions) to adapt the block to a
particular backend. Atomicity thus enables the core to exploit
fine-grained heterogeneity.
Key Idea #3: Combine out-of-order and VLIW/in-order
execution backends by using out-of-order execution to

form stable VLIW schedules. Our final idea leverages
dynamically-scheduled (out-of-order) execution in order to
enable statically-scheduled (VLIW/in-order) execution with
runtime-informed instruction schedules. The out-of-order back-
end observes the dynamic schedule and, when it is stable (un-
changing) over multiple instances of the same code, records the
schedule and uses it for VLIW or in-order execution. If the core
later determines that this schedule leads to unnecessary stalls,
the schedule is thrown away and the block is again executed by
the out-of-order backend. Hence, most of the the performance
of out-of-order execution is retained while saving a significant
amount of energy.

3.2. Atomicity

Here, we briefly describe several concepts that are important
to understanding our design. First, atomicity of a block means
that a block either completes execution and commits its side-
effects, or else is squashed and has no side-effects. This is in
contrast to a conventional core, in which the atomic unit of exe-
cution is a single instruction, and each instruction commits its
results separately. Second, liveins and liveouts are the inputs
and outputs, respectively, to and from a block. A livein is any
register that an instruction in a block reads that is not written
(produced) by an earlier instruction in the block. A liveout
is any register that an instruction in a block writes that is not
overwritten by a later instruction in the block.

3.3. Block Core Design

Fig. 3 illustrates the basic HBA design. HBA is a block-oriented
microarchitecture. The core consists of three major parts: (i)
block fetch, (ii) block sequencing and communication, and (iii)
block execution. We discuss each in turn.

Figure 3: HBA (Heterogeneous Block Architecture) overview.

3.3.1. Block Fetch The HBA core executes user code that con-
forms to a conventional ISA. Hence, the code must be formed
into blocks dynamically. These blocks are microarchitectural:
the block-level interface is not software-visible. In order to
avoid storing every block in full, the HBA core uses an instruc-
tion cache (as in the baseline), and stores only block metadata
in a block info cache. This cache is indexed with the start PC
of a block and its branch path, just as in a conventional trace
cache [47, 42]. The block info cache stores information that the
core has discovered about the block. This information depends

3

SAFARI Technical Report No. 2014-001 – March 13, 2014

on the block type: for example, for a block that executes on a
VLIW backend, the info includes the instruction schedule.

At fetch, the block frontend fetches instructions from the
I-cache, using a conventional branch predictor. In parallel, it
looks up information in the block info cache. As instructions
are fetched, they are not sent to the backend right away, but
are kept in a block buffer. These instructions become a block
and are sent to the backend either when the block name (PC
and branch path) hits in the block info cache, and no longer
matches exist, or else when the PC and branch path miss in
the block info cache. If there is a miss, the block takes on
default characteristics: it executes on an OoO backend, which
requires no pre-computed information about the block. In this
case, the block is terminated whenever any block termination
condition holds: when (i) it reaches a maximum length, (ii) it
ends at an indirect branch, or (iii) it ends at a difficult-to-predict
conditional branch, as determined by a small (1K-entry) table
of 2-bit saturating counters incremented whenever a branch is
mispredicted.

The use of a block info cache in parallel with a conventional
instruction cache, rather than a full trace cache [47, 42], allows
the HBA core to achieve the best of both worlds: it achieves
the space efficiency of the instruction cache while retaining the
learned information about code blocks (enabling the core to
leverage fine-grained heterogeneity between blocks).
3.3.2. Block Sequencing and Communication The central
portion of the core depicted in Fig. 3 handles sequencing and
communication: that is, managing block program order and
repairing it upon branch mispredicts, sending blocks to the ap-
propriate execution units, and communicating program values
between those execution units.
Block Dispatch and Sequencing: Once a block is fetched, the
block dispatch logic must send it to an appropriate execution
backend. Each execution backend executes one block at a time
until all operations within that block are complete. The block
dispatch logic maintains one free-list of block execution back-
ends per type, and allocates the appropriate type for each block.
The backend is returned to the free list soon as it completes the
block’s execution.

The block sequencing logic maintains program order among
blocks in flight and handles branch misprediction recovery. The
logic contains a block-level ROB (reorder buffer), analogous to
the ROB in a conventional out-of-order design. Two types of
branch mispredicts can occur: intra-block mispredicts, which
involve a conditional branch in the middle of a block, and
inter-block mispredicts, which involve a branch (conditional
or indirect) that is the last instruction in a block. Inter-block
misprediction recoveries squash the blocks that follow the mis-
predicted branch in program order, roll back state using the
ROB, and restart the frontend on the proper path. Intra-block
mispredicts must additionally squash the block that contains
the mispredicted branch, because of block-level atomicity (the
core cannot keep half of the block and squash the other half).
The frontend is then directed to re-fetch a block with a different
branch-path at the same fetch PC.
Global Registers and Liveout-Livein Communication:
Blocks executing on block execution backends communicate

via global registers that receive liveouts from producer blocks
as they execute and provide liveins to consumer blocks. The
global register file is centrally located between the block exe-
cution backends. In addition to data values, this logic contains
subscription bits and a livein wakeup unit, described in more
detail below.

When a block is dispatched, its liveins are renamed by look-
ing up global register pointers in a liveout register alias table
(RAT), which contains an entry for each architectural register.
Its liveouts are then allocated global registers and the liveout
RAT is updated. Liveout-to-livein communication between
blocks occurs as soon as a given liveout is produced within
a backend. The liveout is first written to the global register
file. The livein wakeup unit then sends the value to any blocks
that consume it as a livein. In other words, blocks do not read
liveins all at once, then execute, then write all liveouts. Rather,
values are communicated from producers to consumers as soon
as the values become available. (Without this design choice,
the core achieves only 31% of its performance due to the false
dependences.)

In order to support this wakeup, each global register has a
corresponding set of subscription bits indicating waiting back-
ends. When a block is dispatched, it subscribes to its livein
registers. At each global writeback, the subscription bits allow
wakeups to be sent efficiently to each consuming backend. This
structure is similar to a bit-matrix scheduler [21].
3.3.3. Block Execution Finally, when a block is sent to a
block execution backend, the backend executes the block in an
implementation-specific way. Each backend receives (i) a block
specialized for that backend, and (ii) a stream of liveins for that
block, as they become available. The backend performs the
specified computation and produces (i) a stream of liveouts for
its block, as they are computed, (ii) any branch misprediction
results, and (iii) a completion signal. When a block completes
execution, the backend clears out the block and becomes ready
to receive another block.

In this initial work, we implement two types of block execu-
tion backends: an out-of-order backend and a VLIW/in-order
backend. Both types of backends share a common datapath de-
sign, and differ only in the instruction issue logic and pipeline
width. Note that these backends represent only two points in a
wide design spectrum; more specialized backends are possible
and are left for future work.
Local execution cluster: Both the out-of-order and VLIW/in-
order execution backends in our design are built around a local
execution cluster that contains simple ALUs, a local register
file, and a bypass/writeback bus connecting them. When a
block is formed, each instruction in the block is allocated a
destination register in the local register file. An instruction
that produces block live-outs additionally sends its result to the
global register file.
Shared execution units: In addition to the simple ALUs in
each execution backend, the HBA core shares its more expen-
sive execution units (such as floating-point units and load/store
pipelines). Execution backends arbitrate for access to these
units when instructions are issued (and arbitration conflicts are
handled oldest-block-first, with conflicting instructions wait-

4

SAFARI Technical Report No. 2014-001 – March 13, 2014

ing in skid buffers to retry). Sharing these units between all
execution backends amortizes these units’ cost [30].
Memory operations: The HBA core shares the L1 cache, the
load/store queue, and the load/store pipelines between all ex-
ecution backends. Note that the use of blocks is orthogonal
to both the correctness and performance aspects of memory
disambiguation. Because our core design achieves similar per-
formance to the baseline core, as we show later, the same
memory pipeline throughput is sufficient. Because the back-
ends generate the same single thread’s memory requests (by
executing the same architectural program), and each block can
specify a load/store order within the block, memory ordering
remains correct. Memory disambiguation does not (and need
not) interact with block atomicity, except that all stores in a
block logically commit at once.

Load/store queue (LSQ) entries are allocated in program
order when blocks are dispatched, and the LSQ ensures that
loads receive correct values and that stores commit in-order
when their associated blocks commit. Any load replay due to
incorrect memory speculation can be handled by sending the
load back to the affected block’s execution backend (just as a
conventional out-of-order machine’s LSQ sends misspeculated
loads back for re-execution). For simplicity, we use conserva-
tive disambiguation in our evaluations, but speculation is no
more difficult in HBA than in an out-of-order design.
Out-of-order execution backend (Fig. 4a): This backend im-
plements dataflow-order instruction scheduling within a block.
The instruction scheduler is bit matrix-based [21, 48]. When
a livein is received at the backend, it wakes up dependents as
any other value writeback would. Note that because the block
execution backend does not need to maintain program order
within the block (because blocks are atomic), the backend has
no equivalent to a ROB. Rather, it has a simple counter that
counts completed instructions and signals block completion
when all instructions have executed.

In order to specialize a block for the out-of-order backend,
the block specialization logic (i) pre-renames all instructions
in the block, and (ii) pre-computes the scheduling matrix. This
information is stored in the block info cache and provided with
the block if present. Because the out-of-order backend also
executes new blocks which have no information in the block
info cache, this logic also performs the renaming and computes
this information for the first dynamic instance of each new
block. Because of this block specialization, the out-of-order
backend does not need any renaming logic and does not need
any dynamic matrix allocation/setup logic (e.g., the producer
tables in Goshima et al. [21]). These simplifications save energy
relative to a baseline out-of-order core.
VLIW execution backend (Fig. 4b): Unlike the out-of-order
backend, the VLIW backend has no out-of-order instruction
scheduler. Instead, it contains an issue queue populated with
pre-formed instruction bundles, and a scoreboard stage that
stalls the head of the issue queue until the sources for all of its
constituent instructions are ready. The scoreboard implements
a stall-on-use policy for long-latency operations.

Specialization of blocks for the VLIW backend is more
involved than for the out-of-order backend because VLIW ex-

(a) Out-of-order backend (b) VLIW backend

Figure 4: Block execution backend designs.

ecution requires pre-formed bundles of instructions. Rather
than require the compiler to form these bundles (which requires
a new ISA), the HBA core leverages the existing instruction-
scheduling logic in the core to form bundles dynamically at
runtime. We now describe this specialization and its interaction
with the out-of-order execution backends.

3.4. Combining Out-of-Order and VLIW Execution

The key to exploiting heterogeneity successfully is to use the
most appropriate execution backend for each block of code.
In order to combine out-of-order and VLIW block execution
backends, our initial HBA design introduces a set of simple
mechanisms which we call memoized scheduling.

Memoized scheduling makes use of the observation (seen
in §2) that small blocks of code often exhibit schedule stability.
The key idea of memoized scheduling is to make use of an out-
of-order execution backend to initially execute a block of code,
but also observe its schedule stability. Each time the block
executes on an out-of-order backend, its instruction schedule
(as executed) is recorded. If the instruction schedule of the
block remains stable (i.e., changes very little or not at all) over
multiple executions of that block, then the block of code is
converted to use a VLIW backend. (Our evaluations use a
threshold of four consecutive executions that use exactly the
same schedule.) The recorded instruction schedule is taken as
a set of instruction bundles for a VLIW backend. The VLIW
backends are designed to have the same issue width and func-
tional units as the out-of-order backends so that the recorded
schedule can be used verbatim. Thus, the schedule is recorded
and replayed, or memoized.

In the base case, if the schedule stability is long-term, then
subsequent executions of the block on the VLIW backend will
have the same performance as if the out-of-order backend were
used, and the execution will use less energy because instruc-
tion scheduling is no longer performed dynamically. However,
subsequent executions may experience false stalls, or cycles in
which a VLIW instruction bundle stalls because some but not
all of its bundled instructions are not ready to execute. False
stalls occur because the dynamic timing (e.g., livein availability
or a long-latency cache miss) differs from when the schedule
was recorded; the out-of-order engine could have used a differ-
ent schedule to execute the instructions that are ready. These
false stalls thus result in performance loss with respect to ex-
ecution on an out-of-order engine. In order to ensure timely
re-scheduling, the VLIW backend monitors such false stall
cycles. If the number of false stall cycles for each block (as
a ratio of all execution cycles for that given block) exceeds a

5

SAFARI Technical Report No. 2014-001 – March 13, 2014

threshold of 5%, the schedule is discarded and the block then
executes on an out-of-order backend next time it is dispatched.
3.4.1. Universal Block Backends: Combining OoO/VLIW
Hardware So far, we have exploited instruction-scheduling
heterogeneity by using two separate types of execution back-
ends: one (out-of-order) that performs dynamic scheduling
and one (VLIW) that uses a static schedule. We observe, how-
ever, that a VLIW backend’s hardware is almost a subset of
the out-of-order backend’s hardware. The pipeline configura-
tions are identical and only the scheduler is different. Thus, we
combine the two into one universal block backend that simply
turns off its out-of-order scheduling logic (bit-matrix) when
it is executing in VLIW mode. (One other recent work, Mor-
phCore [27], also observed that an in-order scheduler can be
made by disabling parts of an out-of-order scheduler.)

3.5. Reducing Execute Power

So far, we have exploited instruction-scheduling heterogeneity.
We now describe two ways of exploiting further degrees of
heterogeneity within blocks executing on VLIW backends: (i)
dynamic pipeline narrowing and (ii) dead write elision.
Dynamic Pipeline Narrowing: Many blocks cannot utilize
the full superscalar width of a VLIW backend. To exploit
this, the VLIW block formation process records the maximum
bundle width across all VLIW bundles that are formed from
the recorded instruction schedule of the block. When a VLIW
backend executes a block, it can dynamically narrow its issue
width if the block will not use some of the issue slots, thus
saving static and dynamic energy. (Note that an “in-order”
backend is simply a VLIW backend that has reduced its width
to one way.) These savings occur via clock and power gating
to unused execution units and superscalar issue logic.
Dead Write Elision: In a block executing on a VLIW backend,
any values that are used only while on the bypass network need
not be written to their local destination register. Conversely, any
values that are never used while on the bypass network need
not be written to the bypass network. (Values that are never
used locally at all need not be written to either.) The VLIW
block formation process detects values with such unnecessary
writes and marks them to be elided by VLIW backends, thus
saving dynamic energy.

4. Methodology

System Configuration: We evaluate HBA against several base-
line core designs in a single-core system. We model a sim-
ple memory hierarchy, including an L2 cache, DRAM, and a
prefetcher. Table 1 gives major system parameters.
Simulator: To model the behavior of the HBA core, we em-
ploy an in-house cycle-accurate simulator. Our simulator is
execution-driven. All major structures and algorithms within
the HBA core are modeled. The model executes user-mode
x86-64 code by cracking instructions into µops (using a modi-
fied PTLsim [58] decoder). To collect each checkpoint/trace,
we use a custom Pin-tool [34] and use PinPoints [44] to find
the representative portions of benchmarks.
Power Model: To model core power/energy, we use a modified

Parameter Setting

Baseline Core
Fetch Unit ISL-TAGE [49]; 64-entry return stack; 64K-entry

BTB; 8-cycle restart latency; 4-wide fetch
Instruction Cache 32KB, 4-way, 64-byte blocks
Window Size 256-µop ROB, 320-entry physical register file

(PRF), 96-entry matrix scheduler
Execution Units 4-wide issue; 4 ALUs, 1 MUL, 3 FPUs, 2 branch

units, 2 load pipes, 1 store address/1 store data
pipe.

Memory Unit 96-entry load queue (LQ), 48-entry store queue
(SQ), conservative disambiguation

L1/L2 Caches 64KB, 4-way, 5-cycle L1; 1MB, 16-way, 15-cycle
L2; 64-byte blocks

DRAM Uniform 200-cycle latency; stream prefetcher, 16
streams

Heterogeneous Block Architecture (HBA):
Block Size 16 µops, 16 liveins, 16 liveouts max
Fetch Unit Baseline Fetch Unit; 256-block info cache, 64

bytes/block
Global RF 256 entries; 16 read ports, 8 write ports; 2 cycles

inter-backend latency
Instruction Window 16-entry Block ROB
Backends 16 “universal” backends (OoO- or VLIW-mode)
OoO backend 4-wide, 4 ALUs, 16-entry local RF, 16-entry

scheduler
VLIW backend 4-wide, 4 ALUs, 16-entry local RF, scoreboard

scheduler
Shared Eexecution Units 3 FPUs, 1 MUL, 2 load, 1 store address/1 store

data; 2-cycle roundtrip penalty for use
LQ/SQ/L1D/DRAM Same as baseline

Table 1: Evaluation system parameters.

version of McPAT [33]. To model HBA energy consumption,
we use McPAT’s component models to construct a faithful
model. We replaced McPAT’s ALU model with a custom, more
accurate, Verilog model we developed and synthesized for a
commercial process with Synopsys tools. Energy numbers and
formulas used in our model are provided in [1].

One parameter of our model is the sensitivity of design to
static power. The parameters in our model are based on a 28nm
FDSOI (fully depleted silicon on insulator) process technology
as described in [19]. Depending on operating conditions and
the choice of low Vt (fast, leaky) devices or regular Vt (slow, less
leaky) devices, the relative contribution of static and dynamic
power may vary. For example, leakage will be 15% of total
power for a processor implemented with fast, low Vt devices
operating at nominal voltage (0.9V) [19]. The use of regular
leakage devices will reduce leakage power by about an order
of magnitude but will reduce performance by about 10–15%.
Results will change depending on the characteristics of the
underlying process technology and choice of operating voltage.
In this work, we focus on two evaluation points: worst-case
leakage (all fast low-Vt devices at 0.9V), resulting in 15% of
total power, and more realistic leakage with a 50%/50% mix
of low-Vt and high-Vt devices, resulting in 10% of total power.
A real design [14] might use both types by optimizing critical
path logic with fast transistors while reducing power in non-
critical logic with less leaky transistors. Our main analysis
assumes 10% leakage but we also summarize key results for
15% leakage in §5.1.

Finally, our model assumes power gating in three mecha-

6

SAFARI Technical Report No. 2014-001 – March 13, 2014

nisms: we gate 1) scheduling logic in BEUs when they are
in VLIW mode, 2) superscalar ways when BEUs execute nar-
row VLIW blocks, and 3) shared execution units (FPUs and
the multiplier) in both HBA and in the baseline. We assumed
perfect gating as an upper bound; however, we believe that
more realistic power or clock gating in the HBA mechanisms
could achieve most of the same benefits due to two reasons.
First, when most of the power is dynamic, simply gating the
scheduling logic’s clocks and avoiding its use would remove
most of the scheduler power. Second, gating superscalar ways
can be accomplished with two techniques: segmenting the by-
pass/writeback network so that only buses to active ways are
driven, and (assuming that the register file achieves its high
port count by using multiple replicas) writing results only to
register file replicas for active execution lanes/ways.
Workloads: We evaluate HBA with a set of 184 distinct
checkpoint/traces, collected from the SPEC CPU2006 [52],
Olden [45], and MediaBench [32] suites, and an array of other
software: Firefox, FFmpeg, the Adobe Flash player, the V8
Javascript engine, the GraphChi graph-analysis framework [31],
MySQL, the lighttpd web server, LATEX, Octave (a MATLAB re-
placement), and a checkpoint/trace of the simulator itself. Many
of these benchmarks had multiple checkpoint/traces collected
at multiple representative regions as indicated by PinPoints.
All checkpoint/traces are listed in [1], along with their individ-
ual performance and energy consumption on each of the core
models evaluated in this paper.
Baseline Core Designs: We compare HBA to four core de-
signs. First, we compare to two variants of a high-performance
out-of-order core: one with a monolithic backend (instruction
scheduler, register file, and execution units), and one with a
clustered microarchitecture that splits these structures into sepa-
rate clusters and copies values between them as necessary [17].
The clusters have equivalent scheduler size and issue width
as the block execution backends in the HBA core. We also
compare to a coarse-grained heterogeneous design that com-
bines an out-of-order and an in-order core [35]. To be fair
in our comparisons, we idealized the controller we model for
this coarse-grained design, which provides an upper bound on
efficiency and performance relative to the real controller-based
mechanism of [35]. To do so, we first run each benchmark on
4-wide OoO and 2-wide in-order cores and record statistics sep-
arately for each 1K-instruction epoch, then examine each epoch
and combine the simulation results post-mortem. The control
algorithm is a PI controller similar to Lukefahr et al. [35] that
targets < 5% performance degradation.

5. Evaluation

In this section, we evaluate the performance of HBA in detail
in comparison to a comprehensive set of baseline core designs.
We will show that three main conclusions hold: (i) HBA has
nearly the same performance as a baseline 4-wide out-of-order
core, with only 1% performance degradation on average; (ii)
HBA saves 36% of average core power relative to this baseline;
(iii) HBA is the most energy-efficient design among a large set
of evaluated core designs, including monolithic and clustered

out-of-order cores, in-order cores, and a state-of-the-art hetero-
geneous core design (§5.3 summarizes this result by evaluating
HBA against a variety of core designs that fall into different
power-performance tradeoff points).

5.1. Power

The primary benefit of the HBA design is that it saves sig-
nificant core energy (and hence, average core power). Ta-
ble 2 shows average core power and Energy Per Instruction
(EPI) (in addition to performance, discussed below) for six
core designs: baseline out-of-order, clustered out-of-order [17],
coarse-grained heterogeneous [35], coarse-grained heteroge-
neous combined with clustered out-of-order, HBA with only
out-of-order backends, and HBA with heterogeneous backends.
Overall, HBA (row 6) reduces average core power by 36.4%
and EPI by 31.9% over a baseline out-of-order core (row 1).
HBA is also the most energy-efficient core design evaluated in
terms of both average core power and EPI.

Row Configuration ∆ IPC ∆ Power ∆ EPI

1 4-wide OoO (Baseline) — — —
2 4-wide Clustered OoO [17] -1.4% -11.5% -8.3%
3 Coarse-grained [35] -1.2% -5.4% -8.9%
4 Coarse-grained, Clustered -2.8% -16.9% -17.3%
5 HBA, OoO Backends Only +0.4% -28.7% -25.5%
6 HBA, OoO/VLIW -1.0% -36.4% -31.9%

Table 2: Summary of performance, power, and EPI of different
core designs compared to the baseline out-of-order core.

To provide more insight into these numbers, Fig. 5 shows a
breakdown of the EPI. We make several major observations:
1. Energy reductions in HBA occur for three major reasons:
(i) decoupled execution backends, (ii) block atomicity and (iii)
heterogeneity. The clustered out-of-order core, which has ex-
ecution clusters configured equivalently to HBA but which
sends instructions to clusters dynamically (item (i)), saves 8.3%
energy per instruction relative to the baseline monolithic core
(first to second bar). Then, leveraging block atomicity (item
(ii)), the HBA design that uses only out-of-order execution
backends reduces energy by a further 17.2% (second to fourth
bar). Finally, making use of all heterogeneous execution back-
ends (item (iii)) reduces energy by 6.4% (fourth to fifth bar).
We now examine each of these trends in more detail.
2. Decoupled execution backends: the clustered core saves
energy in the instruction scheduling because each cluster has
its own dynamic scheduling logic that operates independently
of the other clusters. As a result, the RS (scheduler) power
reduces by 71% moving from the first to second bar in Fig. 5.
3. Block atomicity: HBA, even without heterogeneous back-
ends, saves energy in renaming (RAT), program-order sequenc-
ing/retire (ROB), and program value storage (global register
file) because it tracks blocks rather than instructions. Fig. 6
shows the root cause of these savings: (i) the block core re-
names only liveouts, rather than all written values, so RAT
accesses reduce by 62%; (ii) the block core dispatches and
retires whole blocks at a time and stores only information about
liveouts in the ROB, thus reducing ROB accesses by 74%; and

7

SAFARI Technical Report No. 2014-001 – March 13, 2014

 0

 0.5

 1

 1.5

 2

O
o

O

C
lu

stered

C
o
arse

C
o
arse,

C
lu

stered

H
B

A
/O

o
O

E
n

er
g

y
/I

n
st

ru
ct

io
n

 (
n

J)

Frontend
RAT
ROB

RS (Scheduler)
RF

Exec (ALUs)
Bypass Buses

LSQ
L1
L2

Figure 5: Energy-per-Instruction (EPI) breakdowns.

 0

 0.2

 0.4

 0.6

 0.8

 1

RAT ROB Global RFN
o
rm

a
li

z
e
d
 A

c
c
e
s
s
e
s Baseline

HBA

Figure 6: Reductions in basic core events in HBA due to use of
atomic blocks.

(iii) only 60% of register file accesses go to a large central
register file.
4. Heterogeneity: the HBA design with all mechanisms enabled
saves energy in (i) instruction scheduling, due to the use of
VLIW backends for 61% of blocks, and (ii) the register file and
the bypass network: dynamic pipeline narrowing for narrow
blocks causes 21% of all µops to execute on a narrow pipe, and
dead write elision eliminates 44% of local RF writes and 19%
of local bypass network writes.
5. Examining the coarse-grained heterogeneous core (which
is the state-of-the-art in heterogeneous core design [35]), we
see that it can save energy in both the out-of-order logic (RAT,
ROB, and RS) as well as the execution resources (bypass buses
and register file) because it is able to use the narrower in-order
backend a portion of the time. However, when it is using the
out-of-order backend, it cannot improve the energy-efficiency
of that backend. Compared to this baseline heterogeneous
core, HBA saves additional energy because it can exploit finer-
grained heterogeneity.
6. Using a clustered out-of-order backend in the coarse-grained
heterogeneous core (as shown in row 4 of Table 2 and as Coarse,
Clustered in Fig. 5) enables more EPI (and power) reduction
than provided by either the clustered out-of-order core or the
coarse-grained heterogeneous core [35] alone, mainly due to
the reduction of the scheduler power with clustering, as ob-
served above. However, this comes with higher performance
degradation than any of the designs (2.8% as seen in row 4
of Table 2). HBA outperforms this coarse-grained, clustered
design in IPC, power and EPI, as seen in Table 2 and Fig. 5.

Overall, HBA reduces core energy significantly compared to
all baseline designs, including the non-clustered and clustered
versions of a state-of-the-art heterogeneous core design [35],
by leveraging block atomicity and heterogeneity to execute
application code more efficiently.

Finally, we note that these savings are relatively robust to

power-modeling assumptions. While we assumed in the above
evaluation that leakage comprises 10% of total power (§4),
corresponding to a realistic mix of fast, leaky transistors and
slower, less leaky transistors, we also report power results
for the worst case in our process, 15% leakage. Under this
assumption, HBA still reduces average core power by 21.9%
and EPI by 21.1% relative to the baseline out-of-order core.

5.2. Performance

5.2.1. Performance of HBA vs. Baselines In addition to
energy/power, Table 2 shows normalized average (geometric
mean) performance for our baseline and HBA evaluation points.
Several major conclusions are in order:
1. The HBA design (row 6) experiences 1.0% performance
degradation, on average, compared to the baseline out-of-order
core (row 1). The similar performance is a result of equivalent
instruction window size and a balance of two major factors:
performance gain due to higher available issue width and per-
formance loss due to inter-block communication latency, as we
explain in §5.2.2.
2. When all blocks are executed on out-of-order backends only
(row 5), the HBA design experiences a 0.4% performance gain
relative to baseline (row 1), and 1.4% relative to nominal HBA
(row 6). We conclude that instruction memoization has some
performance penalty (because it sometimes sends blocks to
VLIW backends even though dynamic scheduling would be
better for the blocks), but that this penalty is modest (1.0%) for
the energy reduction it obtains.
3. In comparison to the coarse-grained heterogeneous core
design (row 3), HBA experiences approximately the same per-
formance, but much lower average core power. Although both
schemes are able to exploit heterogeneity, the HBA design can
save more energy because it uses its VLIW (lower-cost) back-
ends only for blocks of code that achieve good performance on
these backends. It can thus save energy while maintaining good
performance. In contrast, the coarse-grained heterogeneous
design must execute the whole program on only one core at a
time, and it loses more performance when using the in-order
core. It thus uses the in-order core less frequently than HBA
uses its VLIW backends.
4. Using a clustered out-of-order backend in the coarse-grained
heterogeneous core (row 4) degrades performance over either
the clustered or coarse-grained core alone (rows 2,3) due to
the additive overheads of clustering [17] and coarse grained
heterogeneity [35]. HBA (rows 5,6) has higher performance as
well as better power/energy efficiency than this design.
5.2.2. Limit Studies in Performance In order to better under-
stand the factors in HBA’s performance and its potential relative
to other designs, we show several control and limit studies in
Table 3. This table shows a baseline out-of-order design as
(i) its issue width is widened and (ii) its fetch and retire width
bottlenecks are removed. It also shows HBA (without hetero-
geneous backends) as its inter-block communication latency
is removed and as its fetch width bottleneck is alleviated. We
make several major conclusions:
1. Inter-block communication latency penalizes performance.
To demonstrate this impact, we evaluate HBA with “instant

8

SAFARI Technical Report No. 2014-001 – March 13, 2014

inter-block communication” (row 5). In this design, the ideal
HBA design (row 5) achieves 6.2% higher performance than
the baseline out-of-order (row 1).
2. Against this performance degradation, however, higher
aggregate issue rate increases HBA’s performance. This higher
issue rate arises because each block execution backend has its
own scheduler and simple ALUs that work independently. In
some cases, these independent clusters can extract higher ILP
than in the baseline core. This effect is especially visible when
inter-block latency is removed, and is responsible for HBA’s
6.2% IPC increase above baseline.
3. Higher available issue rate alone cannot account for all of the
idealized HBA design’s performance: other bottlenecks are also
present. To see this, we evaluate a 64-wide out-of-order core
with a monolithic scheduler (row 2). Such a design performs
only 2.1% better than baseline (row 2), in contrast to 6.2% for
idealized HBA (row 5). Because the wide out-of-order core
does not provide an upper bound over HBA, we conclude that
other effects are present.
4. The remaining advantage of HBA is due to block-wide
dispatch and retire in HBA: because it tracks precise state only
at block boundaries, it is able to achieve high instruction retire
throughput when the backend executes a region with high ILP.
Allowing for block-wide (or 16 µop-wide) fetch/dispatch/retire
in both the out-of-order and HBA designs, we observe 23.6%
(OoO, row 6) and 23.1% (HBA, row 3) performance above
baseline, respectively. Hence, HBA is capable of harnessing
nearly all available ILP discovered by an ideal out-of-order
design, subject only to inter-block communication latencies
and fetch/retire bottlenecks.

Row Configuration IPC ∆

Baselines:
1 4-wide OoO (Baseline) —
2 64-wide OoO +2.1%
3 64-wide OoO, Wide Fetch/Retire +23.6%

HBA Variants:
4 HBA, OoO Only +0.4%
5 HBA, OoO Only, Instant Inter-block Commu-

nication
+6.2%

6 HBA, OoO Only, Instant Inter-block Comm.,
Wide Fetch

+23.1%

Table 3: Limit studies and control experiments.

5.2.3. Per-Application Performance and Energy Fig. 7 plots
the IPC and EPI of HBA across the set of all benchmarks, nor-
malized against the out-of-order baseline core’s IPC and EPI.
(Fig. 8 shows selected benchmarks in more detail; the full
set of data is available in an anonymized report [1]). The left
three-quarters of the benchmarks experience some performance
degradation relative to the out-of-order core mainly for the rea-
sons described in §5.2.2. The highest performance degradation
is 42% for one benchmark that has a high block squash rate.1

However, all but four benchmarks achieve at least 80% of the

1We found that two types of code performs poorly on HBA: code with hard-
to-predict branches, leading to block squashes, and code with long-dependence
chains, leading to high inter-block communication.

baseline performance. Significantly, the rightmost quarter of
benchmarks achieve higher performance on HBA than on the
out-of-order core. In a few cases, the performance gain is very
large (1.79x maximum), due to additional ILP exploited by
independent HBA backends. The benchmarks that perform
best with HBA are largely those with regular code (e.g., simple,
highly-unrolled loops) that can execute independent chunks in
each backend. In all except for a few workloads HBA reduces
EPI over the baseline.

 0.5

 1

 1.5

 2

 0 50 100 150R
el

at
iv

e
v
s.

 B
as

el
in

e

Benchmark (Sorted by Rel. HBA Performance)

IPC
EPI

Figure 7: HBA performance and EPI relative to baseline OoO.

 0.5

 1

ffm
peg

473.astar

429.m
cf

latex
401.bzip2

graphchi

403.gcc

437.leslie3d

octave

456.hm
m

er

450.soplex

433.m
ilc

R
el

.
v

s.
 B

as
el

in
e

IPC
EPI

Figure 8: HBA performance and EPI on selected benchmarks.

5.3. Power-Performance Tradeoff Space

Fig. 9 shows multiple HBA and baseline core configurations
plotted within the 2D power-performance tradeoff space. Vari-
ants of HBA are labeled as “HBA(number of block backends,
other options),” with options including OoO (out-of-order back-
ends only) and 2-wide (all block backends are 2-wide). The
plot compares HBA configurations against several out-of-order
baselines with various window sizes, 1-, 2-, and 4-wide in-order
baselines, and several coarse-grained heterogeneous cores. We
conclude that (i) HBA’s power-performance tradeoff is widely
configurable, (ii) HBA is the most energy-efficient design (clos-
est to the bottom-right corner), (iii) HBA enables new points in
the power-performance tradeoff space.5.4. Fine-Grained Heterogeneity

In our initial motivation, we analyzed the behavior of the base-
line out-of-order core to demonstrate fine-grained heterogeneity
with respect to instruction scheduling. We now verify that this
fine-grained heterogeneous behavior is exploited by the block-
core design. In order to do so, we observe the stream of retired
blocks produced by HBA and form the time-series composed
of each block’s type (out-of-order or VLIW), and then we ex-
amine the frequency spectrum of this time-series, i.e., the rate
at which the block-type changes when observing execution in
program order. Fig. 10 shows the average spectrum obtained
by Fourier transform of this time-series over all benchmarks.

9

SAFARI Technical Report No. 2014-001 – March 13, 2014

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
el

.
A

v
g
.
C

o
re

 P
o
w

er
 (

v
s.

 4
-w

id
e

O
o
O

)

Rel. IPC (vs. 4-wide OoO)

HBA(16,OoO)

HBA(16)
HBA(8)

HBA(4)
HBA(16,2-wide)

1-wide in-order

2-wide in-order

256-ROB, 4-wide OoO, clustered

Coarse-grained (256-ROB)

HBA(64)

1024-ROB, 4-wide OoO, clustered

4-wide in-order

128-ROB, 4-wide OoO

256-ROB, 4-wide OoO

Coarse-grained (128-ROB)

More Efficient

In-Order
Out-of-Order
Coarse-grained Hetero
HBA

Figure 9: Power-performance tradeoff space of core designs.

 0

 0.02

 0.04

 0.06

 5 10 15 20 25 30

S
p
ec

tr
u
m

Frequency (/ 64 block retires)

Frequency Spectrum of Retire-Order Block Types

Figure 10: Frequency spectrum of the block type of each retired
block, in program order.

As the figure shows, the spectrum is largely “noise,” with sig-
nificant high-frequency energy. Hence, the block type switches
frequently when observed in program order. (For example, the
rightmost bar indicates occurrences in which each retired block
is the opposite type of the last, i.e., OoO and VLIW blocks are
interleaved tightly.) This confirms that fine-grained intermixing
of OoO and VLIW execution occurs in HBA, validating the
decision to exploit fine-grained heterogeneity.

Note that unlike the initial motivational result in §2, this
analysis records actual block types, rather than the earlier orac-
ular results that compared every block’s instruction schedule to
that of its most recent previously-executed instance. The actual
mechanism for transitioning between out-of-order and VLIW
modes has some hysteresis, such that block types tend to be
more stable than if every opportunity to re-use a schedule were
exploited. This leads to the presence of more low-frequency
energy in the spectrum in Fig. 10.

5.5. Symbiotic Out-of-Order and VLIW Execution

Fig. 11 presents the average block type. For a given block
(out of all blocks executed in all benchmarks), we record its
average type over all retired instances of that block (so that,
e.g., a block that retires 25% of the time after executing on an
out-of-order backend has an average type of 25% OoO). We
then accumulate a histogram of the average type of all blocks,
where each block’s contribution is weighted by the number of
times it is retired.

As the figure shows, the distribution is very bimodal: most
blocks are either almost always executed out-of-order, or almost
always executed VLIW. The mode of a particular block largely
depends on whether (i) it contains events that exhibit dynamic
(changing) latencies, such as cache misses that occur only
sometimes, and/or (ii) its execution timing depends on the
preceding blocks and their timing, which may be different for
each executed instance of this block. Hence, the execution

 0
 0.1
 0.2
 0.3
 0.4
 0.5

OoO 50% OoO/VLIW VLIW

F
re

q
u

en
cy

Average Block Type

Average Block Type: Histogram per Block

Figure 11: Histogram of average type for each block.

schedule may change, but whether it is susceptible to change is
itself a consistent property.

Next, we perform a frequency spectrum analysis on the block
type that a given block takes on each time it is executed, and
then average the resulting frequency spectrum over all blocks
in all benchmarks. Fig. 12 shows the resulting spectrum. This
frequency spectrum differs from the all-block spectrum pre-
sented in Fig. 10 because we observe each block’s behavior
relative to its own past instances, not relative to the other blocks
nearby in program order. As this per-block spectrum shows,
most block behavior is low-frequency: in other words, blocks
change type relatively infrequently. From this, we conclude
that fine-grained heterogeneity occurs because different blocks
intermix in the program’s instruction stream, not because any
particular block changes behavior rapidly.

 0

 0.01

 0.02

 5 10 15 20 25 30

S
p

ec
tr

u
m

Frequency (/ 64 instances of this block)

Frequency Spectrum of Per-Block Type Switches

Figure 12: Frequency spectrum of the type of each instance of
a given block, averaged over all blocks.

We show a sorted curve of per-benchmark out-of-order vs.
VLIW block distribution in Fig. 13. We observe that most
benchmarks have a heterogeneous split of block type, with
relatively few having either all out-of-order blocks or all VLIW
blocks. Interestingly, for a few benchmarks on the left, this is
not the case: almost all blocks (> 90%) execute as VLIW. For
those benchmarks, that learning one instruction schedule per
block is sufficient to capture most of the benefit of out-of-order
execution. Finally, a more detailed breakdown of block type by
both OoO/VLIW and VLIW width is shown in Table 4. This
data shows that dynamic pipeline narrowing captures significant
opportunity at least down to a 2-wide configuration (half of the
nominal block backend pipeline width).

Type Out-of-
Order

VLIW
(4
wide)

VLIW
(2
wide)

VLIW
(1-
wide)

Retired
Blocks

38.6% 39.3% 20.1% 2.0%

Table 4: Distribution of block type (detailed).

10

SAFARI Technical Report No. 2014-001 – March 13, 2014

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
R

et
ir

ed
 B

lo
ck

s

Benchmark (Sorted by OoO Fraction)

OoO blocks

VLIW blocks (wide or narrow)

Figure 13: Distribution of block type for all retired blocks.

 0

 0.1

 0.2

 0.3

 0
 -

-
 1

 2
 -

-
 3

 4
 -

-
 5

 6
 -

-
 7

 8
 -

-
 9

1
0
 -

-
1
1

1
2
 -

-
1
3

1
4
 -

-
1
5

1
6
+

F
re

q
u
en

cy

Liveins per Block

(a) Liveins

 0

 0.1

 0.2

 0.3

 0
 -

-
 1

 2
 -

-
 3

 4
 -

-
 5

 6
 -

-
 7

 8
 -

-
 9

1
0
 -

-
1
1

1
2
 -

-
1
3

1
4
 -

-
1
5

1
6
+

F
re

q
u
en

cy

Liveouts per Block

(b) Liveouts

Figure 14: Distribution of liveins and liveouts per block.

5.6. Block Characteristics

Over all benchmarks, the average block has 5.00 liveins and
4.32 liveouts. In contrast to compiler-based approaches to
forming atomic blocks [38, 24, 37, 9], HBA does not explic-
itly attempt to find “good” cuts between blocks that minimize
inter-block communication. In addition, the core cannot know
whether a value is “dead” past the end of the block. Rather,
it must treat every modified architectural register as a live-
out. Nevertheless, the number of liveins remains smaller than
the total number of sources for all instructions (up to 32 per
block) because many values that are consumed are produced
locally, within the block. Likewise, the number of liveouts
remains smaller than the total number of register destinations
(up to 16 per block) because (i) some architectural registers
are overwritten within the block and (ii) many µop sequences
for macro-instructions write to temporary registers (part of the
µISA) which do not need to be communicated between blocks
because blocks are cut at macro-instruction boundaries.

5.7. Design Parameter Evaluations

5.7.1. Fine-grained Inter-block Communication Recall that
HBA uses a fine-grained livein wakeup mechanism: liveouts
are sent out of a block execution backend as soon as they are
produced and can wake up dependents in other blocks right
away. Although this design choice is more expensive than a
simpler alternative design in which liveouts are written all at
once when a block completes, and later blocks read liveins all at
once, the design is important to performance because it prevents
false dataflow dependences when unrelated dependence chains
share one block. To demonstrate the performance impact, we
implement two alternate design options, all-at-once liveins and
all-at-once liveouts, that enforce that a block receives all liveins
before beginning execution, and/or sends all liveouts only after
completing execution, respectively. We then evaluate HBA with
all four combinations of options. We find that relative to HBA
without either option, enforcing only all-at-once liveins results
in 64% performance loss. Enforcing only all-at-once liveouts
results in 55% performance loss. Combining both restrictions
results in 69% performance loss. Hence, we conclude that the

fine-grained inter-block communication in HBA is necessary
to maintain good performance.
5.7.2. Ideal Backend Choice When HBA sends a block to
a VLIW backend, it is predicting that the recorded schedule
for that block will be accurate. We perform an ideal study to
understand the accuracy of this prediction. To perform this
study, we execute all blocks on out-of-order backends, but as
soon as a block completes, we compare its schedule to that
of the block’s previous instance. If the block’s schedule is
the same, we assume that a schedule memoization mechanism
with “perfect” prediction could have sent the block to a VLIW
backend. We then alter the power model event counts post-
mortem as if the block had executed on a VLIW backend
instead. We also observe the maximum issue width and we
count how many bypass broadcasts and local register writes
were actually necessary, thus accounting for narrow-pipe and
dynamic event elision savings. Hence, performance is identical
to the out-of-order-only design, but power is reduced as much
as possible given the identical performance.

With this study, we find that power is reduced by 31.5%
relative to the baseline (recall that OoO-only HBA reduces
power by 28.7% and HBA with heterogeneity reduces power
by 36.4%). These “ideal” savings are less than HBA with real
VLIW backends because no performance is lost. In contrast, the
real HBA schedule memoization mechanism sometimes uses
a VLIW backend when an out-of-order backend was actually
necessary, reducing performance but saving additional power.
5.7.3. Inter-Backend Communication Latency Our primary
evaluations assume a 2-cycle additional latency for all values
communicated between backends. We find that performance is
highly sensitive to this communication latency: when increased
to 3 cycles, performance degrades by 4.0%. Conversely, when
latency is decreased to 0 cycles over a monolithic instruction
window (“instant” communication), performance increases by
6.2%. Hence, design of the global register file and liveout
wakeup logic is critical for good performance.
5.7.4. Block Info Cache Fig. 15 shows performance sensitivity
to the block info cache size for HBA. The arrow indicates the
design point (256 blocks) at which our main evaluations are
performed. Although performance degrades with smaller cache
sizes, the cache could be reduced to only 64 blocks while
retaining 91% of performance at 256 blocks.

Recall that the block info cache is an auxiliary store aside
the main instruction cache that contains only metadata (such as
VLIW schedules), not the full instruction sequences for each
block. Hence, a small block info cache does not impact per-
formance as much as a small instruction cache would: in case
of a miss, the block front-end simply fetches instructions and
forms a new block, which executes on an out-of-order backend
by default (because no VLIW schedule or other properties are
known). This behavior actually causes a slight dip in perfor-
mance between 512 and 1024-block cache sizes: a larger block
info cache retains more information and hence sends more
blocks to VLIW backends, which saves power but loses some
performance.
5.7.5. Full Block Cache Recall that HBA uses a block info
cache that stores only metadata for each code block, without

11

SAFARI Technical Report No. 2014-001 – March 13, 2014

 0.8

 0.9

 1

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

p
erfect

R
el

at
iv

e
IP

C

Block Info Cache Size (blocks of 16 uops)

default

Figure 15: Sensitivity to block info cache size.

storing the block’s instructions. This design saves space (a
cache of 1024 blocks requires 256 KB of storage), but cannot
achieve the higher fetch rates that are possible if pre-formed
blocks are fetched [24, 47].

As an alternative design choice, full blocks can be stored in
the lower levels of the cache hierarchy (L2 or LLC). A small L1
block cache (which stores complete blocks, not only metadata)
can be added so that the L2 need not sustain the full fetch
bandwidth. We perform a study that stores blocks in the L2
cache by hashing block identifiers to L2 sets. Each block of 16
µops, with 256 bits per µop, takes 256 bytes (4 cache blocks)
of storage. Inserting a code block evicts the corresponding data
blocks and vice versa. We add a small L1 block cache of 64
blocks and assume a 20 cycle L1 block cache miss latency.

For benchmarks that require high fetch IPC and have lower
data cache footprint, such a design might be an appropriate
tradeoff. However, we find that this alternative design with
only out-of-order backends suffers a 21.3% performance degra-
dation (at 36.5% average core power reduction). Although
increased fetch rate allows higher utilization of the execution
resources, the high latency penalty of block cache misses to
L2 as well as the data-cache capacity impact both reduce per-
formance significantly. Additional L2 accesses also penalize
energy savings relative to the nominal HBA design. Hence, we
conclude that our block metadata-based approach is the most
efficient design choice for our parameters. If full blocks must
be stored for other reasons – for example, more radical code
transformations for specialized backends – then a block cache
could be used for these blocks.
5.7.6. Window Scalability We show that HBA can enable
more efficient scaling to a large instruction window than a base-
line core design. Table 5 shows normalized performance (IPC)
and average core power for two design points: a moderately-
sized instruction window of 256 µops, which we use in our
main evaluations, and a large instruction window of 1024 µops.
Such a large instruction window allows for higher memory la-
tency tolerance, which improves performance. At each design
point we show an out-of-order core and HBA.

Two conclusions are in order. First, for the large instruction
window baseline, we show a monolithic large-window design
as well as a clustered design. The design with a monolithic
instruction scheduler and register file has approximately 3.7x
the core power of the baseline (moderate-window) design, and
likely would not meet timing at the same clock frequency be-
cause of its enlarged critical structures. The clustered design
requires only a (relatively) reasonable increase of 31% average
core power over the moderate-window baseline. This com-
parison indicates that segmenting the window via clustered

scheduling and register files is necessary to achieve reasonable
scalability.

Second, HBA achieves the same or better performance scal-
ability as the large-window design. At the large window size,
most of the additional performance comes from the ability to
tolerate very long latencies, not necessarily from fine-grained
communication between any two µops far apart in the window.

Design Rel. IPC Rel. Power

Moderate (256-µop window) designs:
Baseline, 256-ROB 1.00 1.00
Baseline Clustered, 256-ROB 0.99 0.88
HBA, 16 blocks, 16µops/block 0.99 0.64

Large (1024-entry window) designs:
Baseline, 1024-ROB, 256-RS (monolithic) 1.23 3.70
Baseline, 1024-ROB, 256-RS (clustered) 1.25 1.31
HBA, 64 blocks, 16µops/block 1.28 0.98

Table 5: Window-size scaling in baseline and HBA cores.

5.7.7. Block Size We evaluate a variant of HBA that forms and
executes blocks of up to 64 µops (four times the nominal 16
µops/block). When configured with a window size of 16 blocks
(hence 1024 µops total), this core achieves 20.2% performance
above the baseline out-of-order core, with a relative core power
of 0.94 (6.1% reduction). Note that the HBA core with an equiv-
alent window size but 64 blocks of 16 µops/block achieves a
27.9% performance gain above baseline and has a 1.8% power
reduction. Larger blocks, on average, are less efficient for three
reasons: (i) they are cut early during formation more frequently,
leading to reduced window utilization; (ii) they are more likely
to experience intra-block branch mispredictions, leading to
more wasted speculative work; and (iii) the window structures
that scale superlinearly, such as instruction schedulers in out-
of-order block backends, have lower efficiency when sized for
larger blocks.
5.7.8. Core Area Like previous approaches that propose het-
erogeneous designs (e.g., [57, 23, 29]), HBA optimizes for
a heavily energy/power-constrained future, targeting designs
in which energy and power are performance limiters [16].
Also like other heterogeneous designs that attempt to reduce
power/energy through increased specialization, the power bene-
fits of HBA come at the cost of additional chip area. To evaluate
the area overhead of HBA, we use McPAT, which is able to
estimate area by estimating growth in key structures in the core.
Using this approach, we estimate that the core area increases by
62.5% over the baseline out-of-order core. For comparison, our
“coarse-grained heterogeneous” baseline was estimated to have
20% area overhead [35] (but provides less energy-efficiency
than HBA).

Although HBA comes with significant area overhead, it is
worth noting that the cores occupy a relatively small area in
a typical mobile SoC (e.g., 17% in Apple’s A7 [13]). Hence,
the investment of additional area to improve energy efficiency
could be reasonable. By trading off die area for a microarchitec-
ture that can specialize, HBA can: 1) achieve significant energy
savings that were not easily attainable in a non-heterogeneous
core, 2) enable new power-performance tradeoff points in core

12

SAFARI Technical Report No. 2014-001 – March 13, 2014

design vs. many different designs (§5.3).

6. Related Work

To our knowledge, HBA is the first design that leverages block-
level atomicity to exploit heterogeneity at a fine granularity.
Other works have combined multiple cores or backends and
migrated execution between them (coarse-grained heterogene-
ity) [35, 56, 4, 20, 7, 12], or proposed ways to scale a single
microarchitecture up and down dynamically by power-gating
components or combining cores together [25, 28, 54, 27]. Past
works have also used atomicity in other ways to (i) simplify
the core microarchitecture, (ii) enable better scalability and/or
performance, or (iii) enable optimizations or other code trans-
formations.
Heterogeneous cores: Several works have examined the use
of either multiple heterogeneous cores [4, 56, 22, 20, 7, 12],
one core with multiple heterogeneous backends [35], or a core
with variable parameters [5, 22] in order to adapt to the running
application at a coarse granularity for better energy efficiency.
We quantitatively compared to a coarse-grained heterogeneous
approach [35] in §5 and showed that although coarse-grained
designs can achieve good energy-efficiency, HBA does better
by exploiting much finer-grained heterogeneity. However, com-
bining these two levels of heterogeneous core design might
lead to further gains and we leave this to future work.

Several prior works combine a “cold pipeline” and “hot
pipeline” that execute infrequent (cold) and frequent (hot) code
traces respectively [46, 8, 23]. PARROT [46] captures hot code
traces and performs optimizations on them to produce code for
an optimized VLIW engine. Gupta et al. propose BERET [23],
which adds an auxiliary co-processor that executes data-flow
subgraphs for hot code when those subgraphs fit in the co-
processor. These designs are superficially similar to the use
of VLIW backends in HBA. However, HBA differs in that
its VLIW backends are general-purpose and its mechanism
to prepare code for execution on a VLIW backend is very
simple, requiring no compiler-based or runtime analysis or
optimization. As a result, HBA can execute a large fraction of
blocks (two-thirds on average) on its VLIW backends.

Turboscalar [8] uses two pipelines, one which is “short and
wide” and the other which is “deep and narrow,” that together
share a common pool of functional units. The design captures
hot code traces and stores them in predecoded form for the
short and wide pipeline to execute. This heterogeneous design
memoizes information as HBA does, but for a different goal:
Turboscalar targets performance through a faster frontend while
HBA targets energy through a more efficient backend.

Nair and Hopkins [41] propose DIF (Dynamic Instruction
Formation), which caches pre-scheduled groups of instruc-
tions to execute on a VLIW-like substrate, reducing complexity
and improving efficiency. HBA has two key differences: first,
HBA’s goal is to provide a general substrate for heterogene-
ity enabled by considering atomic blocks, whereas DIF is a
specific proposal to use a VLIW engine in a general-purpose
machine without requiring ISA/compiler support. Second, DIF
does not use an out-of-order engine but only a simple “primary

engine” alongside its VLIW engine, and envisions that most
code should execute on the VLIW engine.
Atomic block-based cores: Melvin et al. [39, 38], and later
Hao et al. [24] and Sprangle et al. [51], propose a core design
in which the compiler provides atomic blocks at the ISA level.
These works note multiple advantages of using atomic blocks:
the core has a higher instruction fetch rate, and can also use a
small local register file to reduce register pressure on a global
register file [51]. HBA forms blocks in hardware and uses the
notion of atomicity to exploit heterogeneity and reduce energy
consumption.

Rotenberg et al. [47] propose the Trace Processor, which
forms traces (atomic blocks), stores them in a trace cache,
and dispatches them to decoupled execution units. HBA has
a similar overall design; however, a Trace Processor does not
leverage any heterogeneity or specialization.

Patel et al. [43] propose rePLay, which forms frames (atomic
blocks), stores these in a frame cache, and performs compiler-
like optimizations on the frames in order to improve perfor-
mance. HBA uses a similar insight that atomicity can allow
code transformations to exploit heterogeneous backends.

Ceze et al. [11] propose a core that commits instructions
in bulk (in atomic blocks) as a way to simplify cache coher-
ence. This use of atomicity is orthogonal to ours, but could be
combined to achieve additional benefits.

The TRIPS processor [40, 10] uses atomic blocks consisting
of explicit dataflow graphs of instructions statically scheduled
onto a grid of execution units. This microarchitecture is very
different from HBA, both designs exploit atomicity to enable ex-
tensive code transformations while maintaining coarse-grained
precise state.

The POWER4 processor [55] performs “instruction group
formation,” treating several fetched instructions as a group for
purposes of tracking throughout the pipeline. Although these
groups are superficially similar to atomic blocks, they are not
saved, specialized, or reused, as our atomic blocks are.
Instruction scheduling memoization: McFarlin et al. [36]
demonstrate that most of out-of-order execution’s benefit comes
from its ability to use a speculative execution schedule, but
not necessarily a different schedule for every instance of an
instruction sequence. This is similar to our observation that
many static regions of code have stable instruction schedules.
However, HBA additionally shows that that heterogeneity exists
in this scheduling behavior and can be exploited.

Banerjia et al. [6] propose MPS (Miss-Path Scheduling),
which pre-schedules instructions and places them in a “Sched-
ule Cache.” Although this design reuses a schedule many times,
as HBA does, its design is very different.

Michaud and Seznec [2] propose pre-scheduling instruc-
tions after decode but prior to placing them in the out-of-
order scheduling window. This prescheduling makes a smaller
scheduling window more effective, but does not save energy by
reusing the same schedule multiple times, as HBA does.
VLIW: HBA uses VLIW backends. Traditional VLIW [18]
statically expresses parallelism in an instruction stream. While
a VLIW design can achieve better energy efficiency in princi-
ple, because it need not perform any instruction scheduling at

13

SAFARI Technical Report No. 2014-001 – March 13, 2014

runtime, a conventional VLIW design is hindered by the diffi-
culty of static scheduling. HBA works around this limitation by
performing instruction scheduling pseudo-statically, based on
the runtime behavior of one dynamic instance of a small region
of code. That schedule can then be re-used, saving energy as in
a conventional VLIW machine.

7. Conclusion
Future core designs must adapt to application code in order
to provide good performance and good energy efficiency. In
this work, we observe that applications are heterogeneous not
only at the coarse grain (i.e., between phases or between sep-
arate applications), but also at the fine grain, i.e., between
adjacent blocks of code. We present the Heterogeneous Block
Architecture (HBA), a new core design that (i) breaks a single
application’s code into blocks and (ii) executes each block of
code on the most appropriate execution backend out of a pool
of heterogeneous backend designs. HBA uses block atomicity
in order to allow each block of code to be specialized appropri-
ately to the right backend. In our initial design, we evaluate an
HBA core with out-of-order and VLIW (statically scheduled)
execution backends, exploiting scheduling heterogeneity.

Our evaluations of the HBA design against a comprehensive
set of baseline out-of-order and in-order cores and a state-of-
the-art coarse-grained heterogeneous design, over a large set of
benchmarks, demonstrate that HBA is the most energy-efficient
design. We observe that HBA achieves a 36.4% average core
power reduction compared to a conventional 4-wide out-of-
order core while degrading performance by only 1%. We con-
clude that HBA provides energy-efficient and high-performance
execution, enables new power-performance tradeoff points in
core design, and provides a flexible execution substrate for
exploiting fine-grained heterogeneity in future core designs.

References
[1] “Anonymous HBA technical report,” https://www.dropbox.com/s/

xx2mq890vuwdkem/appendix.pdf.
[2] “Data-flow prescheduling for large instruction windows in out-of-order

processors,” HPCA-7, 2001.
[3] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Amdahl’s law

through EPI throttling,” ISCA-32, 2005.
[4] ARM Ltd., “White paper: Big.LITTLE processing with ARM Cortex-

A15 & Cortex-A7,” Sept 2011.
[5] R. Bahar and S. Manne, “Power and energy reduction via pipeline

balancing,” ISCA-28, 2001.
[6] S. Banerjia, S. Sathaye, K. Menezes, and T. Conte, “MPS: Miss-path

scheduling for multiple-issue processors,” IEEE Trans. Comp., vol. 47,
pp. pp. 1382 – 1397, Dec. 1998.

[7] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” JILP, June 2008.

[8] B. Black and J. Shen, “Turboscalar: A high frequency high ipc microar-
chitecture,” Workshop on Complexity-Effective Design, 2000.

[9] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Multiscalar processors,”
ISCA, 1995.

[10] D. Burger, S. Keckler, K. KcKinley, M. Dahlin, L. John, C. Moore,
J. Burrill, R. McDonald, W. Yoder, and TRIPS Team, “Scaling to the
end of silicon with EDGE architectures,” IEEE Computer, vol. 37, pp.
44 – 55, Jul. 2004.

[11] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: bulk en-
forcement of sequential consistency,” ISCA-34, 2007.

[12] J. Chen and L. John, “Efficient program scheduling for heterogeneous
multi-core architectures,” DAC-46, 2009.

[13] ChipWorks, “Inside the Apple A7 from the iPhone 5s – Up-
dated,” http://www.chipworks.com/en/technical-competitive-analysis/
resources/blog/inside-the-a7/.

[14] D. Deleganes, J. Douglas, B. Kommandur, and M. Patrya, “Designing
a 3 GHz, 130 nm, Intel Pentium 4 processor,” in IEEE Symposium on
VLSI Circuits, 2002.

[15] P. Denning, “Working sets past and present,” IEEE Trans. Soft. Eng.,
vol. SE-6, pp. 64 – 84, Jan. 1980.

[16] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” ISCA-38,
2011.

[17] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The multicluster
architecture: Reducing cycle time through partitioning,” MICRO-30,
1997.

[18] J. Fisher, “Very long instruction word architectures and the ELI-512,”
ISCA-10, 1983.

[19] P. Flatresse, G. Cesana, and X. Cauchy, “Planar fully depleted silicon
technology to design competitive SOC at 28nm and beyond,” STMicro-
electronics White Paper, Feb. 2012.

[20] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heterogeneous
processors in server systems,” Conf. Computing Frontiers, 2005.

[21] M. Goshima, K. Nishino, Y. Nakashima, S. Mori, T. Kitamura, and
S. Tomita, “A high-speed dynamic instruction scheduling scheme for
superscalar processors,” MICRO-34, 2001.

[22] E. Grochowski, R. Ronen, J. Shen, and H. Wang, “Best of both latency
and throughput,” ICCD, 2004.

[23] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” MICRO-44, 2011.

[24] E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt, “Increasing the instruc-
tion fetch rate via block-structured instruction set architectures,” IJPP,
vol. 26, pp. 449–478, August 1998.

[25] E. İpek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion: Accom-
modating software diversity in chip multiprocessors,” ISCA-34, 2007.

[26] J. Joao, M. Suleman, O. Mutlu, and Y. Patt, “Bottleneck identification
and scheduling in multithreaded applications,” ASPLOS-XVII, 2012.

[27] Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt, “Mor-
phCore: An energy-efficient microarchitecture for high performance
ILP and high throughput TLP,” MICRO-45, 2012.

[28] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,”
MICRO-40, 2007.

[29] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single-
ISA heterogeneous multi-core architectures: The potential for processor
power reduction,” MICRO-36, 2003.

[30] R. Kumar, N. P. Jouppi, and D. M. Tullsen, “Conjoined-core chip multi-
processing,” MICRO-37, 2004.

[31] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph
computation on just a PC,” OSDI-10, 2012.

[32] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems,” MICRO-30, 1997.

[33] S. Li, J. Ahn, J. Brockman, and N. Jouppi, “McPAT: An integrated
power, area, and timing modeling framework for multicore and many-
core architectures,” MICRO-42, 2009.

[34] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in PLDI, 2005.

[35] A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. Dreslinski,
T. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogene-
ity into a core,” MICRO-45, 2012.

[36] D. McFarlin, C. Tucker, and C. Zilles, “Discerning the dominant out-of-
order performance advantage: is it dynamism or speculation?” ASPLOS-
18, 2013.

[37] W. mei W. Hwu et al., “The superblock: An effective technique for vliw
and superscalar compilation,” J. Supercomputing, vol. 7, pp. 229–248,
1993.

[38] S. Melvin and Y. Patt, “Enhancing instruction scheduling with a block-
structured ISA,” Int. J. Parallel Program., June 1995.

[39] S. W. Melvin, M. Shebanow, and Y. Patt, “Hardware support for large
atomic units in dynamically scheduled machines,” in MICRO, 1988.

[40] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A design
space evaluation of grid processor architectures,” MICRO-34, 2001.

[41] R. Nair and M. Hopkins, “Exploiting instruction level parallelism in
processors by caching scheduled groups,” ISCA-24, 1997.

[42] S. Patel, “Trace cache design for wide issue superscalar processors,”
Ph.D. dissertation, 1999.

[43] S. Patel and S. Lumetta, “rePLay: a hardware framework for dynamic
optimization,” IEEE TC, June 2001.

14

https://www.dropbox.com/s/xx2mq890vuwdkem/appendix.pdf
https://www.dropbox.com/s/xx2mq890vuwdkem/appendix.pdf
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/inside-the-a7/
http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/inside-the-a7/

SAFARI Technical Report No. 2014-001 – March 13, 2014

[44] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation,”MICRO-37, 2004.

[45] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, “Supporting dynamic
data structures on distributed memory machines,” ACM Trans. Prog.
Lang. Sys., vol. 17, pp. 233 – 263, Mar. 1995.

[46] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson,
“Power awareness through selective dynamically optimized traces,”
ISCA-31, 2004.

[47] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace processors,”
MICRO-30, 1997.

[48] P. Sassone, J. Rupley, E. Brekelbaum, G. Loh, and B. Black, “Matrix
scheduler reloaded,” ISCA-34, 2007.

[49] A. Seznec, “A 64 Kbytes ISL-TAGE branch predictor,” JWAC-2, 2011.
[50] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior,” ASPLOS-10, 2002.
[51] E. Sprangle and Y. Patt, “Facilitating superscalar processing via a com-

bined static/dynamic register renaming scheme,” MICRO-27, 1994.
[52] Standard Performance Evaluation Corporation, “SPEC CPU2006,” http:

//www.spec.org/cpu2006.
[53] M. Suleman, O. Mutlu, M. Qureshi, and Y. Patt, “Accelerating critical

section execution with asymmetric multi-core architectures,” ASPLOS-
XIV, 2009.

[54] D. Tarjan, M. Boyer, and K. Skadron, “Federation: Repurposing scalar
cores for out-of-order instruction issue,” DAC, 2008.

[55] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “POWER4
system microarchitecture,” IBM J. R&D, vol. 46, pp. pp. 5–25, Jan.
2002.

[56] K. van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through Performance Impact
Estimation (PIE),” ISCA-39, 2012.

[57] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. Taylor, “Conservation cores: reducing
the energy of mature computations,” ASPLOS-XV, 2010.

[58] M. Yourst, “PTLsim: A cycle accurate full system x86-64 microarchi-
tectural simulator,” ISPASS, 2007.

15

http://www.spec.org/cpu2006
http://www.spec.org/cpu2006

	Introduction
	Motivation: Fine-Grained Heterogeneity
	A Fine-Grained Heterogeneous Core
	High-Level Overview
	Atomicity
	Block Core Design
	Block Fetch
	Block Sequencing and Communication
	Block Execution

	Combining Out-of-Order and VLIW Execution
	Universal Block Backends: Combining OoO/VLIW Hardware

	Reducing Execute Power

	Methodology
	Evaluation
	Power
	Performance
	Performance of HBA vs. Baselines
	Limit Studies in Performance
	Per-Application Performance and Energy

	Power-Performance Tradeoff Space
	Fine-Grained Heterogeneity
	Symbiotic Out-of-Order and VLIW Execution
	Block Characteristics
	Design Parameter Evaluations
	Fine-grained Inter-block Communication
	Ideal Backend Choice
	Inter-Backend Communication Latency
	Block Info Cache
	Full Block Cache
	Window Scalability
	Block Size
	Core Area

	Related Work
	Conclusion

