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ABSTRACT
Several system-level operations trigger bulk data copy or initial-
ization. Even though these bulk data operations do not require
any computation, current systems transfer a large quantity of data
back and forth on the memory channel to perform such opera-
tions. As a result, bulk data operations consume high latency,
bandwidth, and energy—degrading both system performance and
energy eXciency.

In this work, we propose RowClone, a new and simple mech-
anism to perform bulk copy and initialization completely within
DRAM— eliminating the need to transfer any data over the mem-
ory channel to perform such operations. Our key observation is
that DRAM can internally and eXciently transfer a large quantity
of data (multiple KBs) between a row of DRAM cells and the as-
sociated row buUer. Based on this, our primary mechanism can
quickly copy an entire row of data from a source row to a destina-
tion row by Vrst copying the data from the source row to the row
buUer and then from the row buUer to the destination row, via
two back-to-back activate commands. This mechanism, which we
call the Fast Parallel Mode of RowClone, reduces the latency and
energy consumption of a 4KB bulk copy operation by 11.6x and
74.4x, respectively, and a 4KB bulk zeroing operation by 6.0x and
41.5x, respectively. To eXciently copy data between rows that do
not share a row buUer, we propose a second mode of RowClone,
the Pipelined Serial Mode, which uses the shared internal bus of a
DRAM chip to quickly copy data between two banks. RowClone
requires only a 0.01% increase in DRAM chip area.

We quantitatively evaluate the beneVts of RowClone by focus-
ing on fork, one of the frequently invoked system calls, and Vve
other copy and initialization intensive applications. Our results
show that RowClone can signiVcantly improve both single-core
and multi-core system performance, while also signiVcantly re-
ducing main memory bandwidth and energy consumption.

*Currently at Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org
MICRO -46, December 07-11 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories
D.4.2 [Storage Management]: Main Memory

Keywords
DRAM, Page Copy, Page Initialization, Memory Bandwidth, Per-
formance, Energy, In-Memory Processing, Bulk Operations

1. INTRODUCTION
The main memory subsystem is an increasingly more signiV-

cant limiter of system performance and energy eXciency for at
least two reasons. First, the available memory bandwidth be-
tween the processor and main memory is not growing or expected
to grow commensurately with the compute bandwidth available
in modern multi-core processors [22, 25]. Second, a signiVcant
fraction (20% to 42%) of the energy required to access data from
memory is consumed in driving the high-speed bus connecting
the processor and memory [46] (calculated using [36]). Therefore,
judicious use of the available memory bandwidth is critical to en-
sure both high system performance and energy eXciency.

In this work, we focus our attention on optimizing two impor-
tant classes of bandwidth-intensive memory operations that fre-
quently occur in modern systems: 1) bulk data copy—copying a
large quantity of data from one location in physical memory to
another, and 2) bulk data initialization—initializing a large quan-
tity of data to a speciVc value. We refer to these two operations
as bulk data operations. Prior research [41, 44] has shown that
operating systems spend a signiVcant portion of their time per-
forming bulk data operations. Therefore, accelerating these op-
erations will likely improve system performance. In fact, the x86
ISA has recently introduced instructions to provide enhanced per-
formance for bulk copy and initialization (ERMSB [20]), highlight-
ing the importance of bulk operations.

Bulk data operations degrade both system performance and en-
ergy eXciency due to three reasons. First, existing systems per-
form such operations one byte/word/cache line at a time. As a
result, a bulk data operation incurs high latency, directly aUecting
the performance of the application performing the operation. For
example, a typical system today (using DDR3-1066) takes roughly
a microsecond (1046ns) to copy 4KB of data over the memory
channel. Second, these operations require a large quantity of data
to be transferred across the memory channel. Hence, they in-
directly aUect the performance of concurrently-running applica-
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tions that share the memory bandwidth. Third, the data transfer
across the memory channel represents a signiVcant fraction of the
energy required to perform a bulk data operation (40% for DDR3-
1066). Clearly, all these problems result from the fact that existing
systems must necessarily transfer a large quantity of data over the
memory channel although neither copy nor initialization of bulk
data requires any computation.

While bulk data operations can also aUect performance by hog-
ging the CPU and possibly polluting the on-chip caches, prior
works [28, 58, 59] proposed simple solutions to address these
problems. The proposed techniques include oYoading bulk data
operations to a separate engine to free up the CPU [28, 59] and/or
providing hints to the processor caches to mitigate cache pollu-
tion [58]. However, none of these techniques eliminate the need
to transfer data over the memory channel, and hence, all of them
suUer from the three problems mentioned above. This is also true
for the enhanced copy and move instructions (ERMSB) recently
introduced in the x86 ISA [20].

Our goal is to design a mechanism that reduces the latency,
bandwidth, and energy consumed by bulk data operations. Our
approach is to provide low-cost hardware support for performing
such operations completely within main memory.1 This approach
eliminates the need to transfer data over the memory channel to
perform a bulk data operation, and hence can potentially mitigate
the associated latency, bandwidth and energy problems.

We propose RowClone, a simple and low-cost mechanism to ex-
port bulk data copy and initialization operations to DRAM. Row-
Clone exploits DRAM’s internal architecture to eXciently per-
form these bulk data operations with low latency and energy con-
sumption. At a high level, a modern DRAM chip consists of a
hierarchy of banks and subarrays, as shown in Figure 1. Each
chip is made up of multiple banks that share an internal bus for
reading/writing data. Each bank in-turn contains multiple subar-
rays [31]. Each subarray consists of hundreds of rows of DRAM
cells sharing a structure called a row buUer.

The key observation behind our approach is that DRAM in-
ternally transfers data from an entire row of DRAM cells to the
corresponding row buUer (even to access a single byte from that
row). Based on this observation, our primary mechanism eX-
ciently copies all the data (multiple KBs) from one row of DRAM
to another row within the same subarray in two steps: 1) copy
the data from the source row to the row buUer, and 2) copy the
data from the row buUer to the destination row. This mecha-
nism, which we call the Fast Parallel Mode (FPM) of RowClone,
requires very few modiVcations to DRAM, and these modiVca-
tions are limited to the peripheral logic of the chip. FPM reduces
the latency and energy consumption of a bulk copy operation by
11.6x and 74.4x (Section 7.1). For the system to accelerate a copy
operation using FPM, the source and destination must be within
the same subarray and the operation must span an entire row
(Section 3.1). Despite these constraints, FPM can accelerate two
widely used primitives in modern systems: 1) Copy-on-Write – a
technique used by operating systems to postpone expensive copy
operations [6, 8, 47, 50, 57], and 2) Bulk Zeroing – used for bulk
memory initialization [7, 9, 45, 58] (Section 5.2 discusses several
applications of Copy-on-Write and Bulk Zeroing in more detail).
To make RowClone more generally applicable to other copy op-

erations between rows that do not share a row buUer, we pro-
pose a second mode of RowClone, called the Pipelined Serial Mode
(PSM). PSM exploits the fact that the DRAM chip’s internal bus

1In this work, we assume DRAM-based main memory, predom-
inantly used by existing systems. Extending our mechanisms to
other emerging memory technologies is part of our future work.
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Figure 1: High-level organization of a DRAM chip

shared across all the banks (Figure 1) is used for both read and
write operations. To copy data from one bank to another, PSM
puts the source bank in read mode, the destination bank in write
mode, and transfers the required cache lines over the internal bus
from the source row to the destination row in a pipelined manner.
By doing so, PSM overlaps the latency of the read and the write
operations involved in the copy. We use PSM to eXciently copy
data 1) from one bank to another and 2) from one subarray to
another within the same bank (Section 3.3).2 As we show in Sec-
tion 7.1, PSM can reduce the latency and energy of an inter-bank
copy operation by 1.9x and 3.2x, respectively.

In addition to the changes required to the DRAM chip (which
cost only 0.01% additional chip area) to support bulk copy and
initialization operations, RowClone requires changes to diUerent
layers of the system stack. In particular, we add two new instruc-
tions, memcopy and meminit, to the ISA to enable the software to
specify occurrences of bulk copy and initialization operations to
the hardware. We discuss the changes required to 1) the processor
microarchitecture and the memory controller to implement the
two new instructions, and 2) the system software to derive maxi-
mum beneVts from RowClone. Section 4 describes these changes.

Applications from standard benchmark suites like SPEC
CPU2006 [51] do not trigger many bulk copy or initialization
operations. However, as mentioned before, several system-level
functions invoke a signiVcant fraction of copy and initialization
operations. We discuss several such scenarios in which we can
employ RowClone (Section 5). We quantitatively evaluate the
beneVts of RowClone using a fork benchmark (Section 7.2), and
Vve other copy and initialization intensive applications: system
bootup, compilation, memcached [2], mysql [3], and a shell script
(Section 7.3). We also evaluate multi-programmed multi-core sys-
tem workloads that consist of a mix of memory-intensive and
copy/initialization-intensive applications. Our evaluations show
that RowClone signiVcantly improves both system performance
and energy eXciency.

We make the following contributions:

• We show that the internal organization of DRAM presents
an opportunity to perform bulk copy and initialization op-
erations eXciently and quickly within DRAM.

2The DRAM hierarchy consists of higher levels, e.g., ranks and
channels. However, as these transfers happen across DRAM
chips, data copy across such levels must necessarily happen over
the memory channel.
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• We propose RowClone, a simple and low-cost mechanism
to export bulk copy and initialization operations to DRAM
via the memory controller. With only a 0.01% increase in
DRAM chip area, RowClone can potentially reduce the la-
tency/energy of a 4KB copy by 11.6x/74.4x.

• We analyze the beneVts of RowClone by using it to acceler-
ate two widely-used primitives in modern systems: Copy-
on-Write and Bulk Zeroing. Our evaluations with a variety
of workloads show that RowClone signiVcantly improves
the performance and energy eXciency of both single-
core and multi-core systems and outperforms a memory-
controller-based DMA approach [59].

2. DRAM BACKGROUND
In this section, we provide a brief background on DRAM orga-

nization and operation required to understand RowClone. As we
will describe in Section 3, RowClone exploits the internal orga-
nization of modern DRAM chips as much as possible, and hence
requires very few changes to existing DRAM chip designs.

As brieWy mentioned in Section 1, a modern DRAM chip con-
sists of multiple DRAM banks, which are further divided into mul-
tiple subarrays (Figure 1). Figure 2 shows the internal organiza-
tion of a subarray. Each subarray consists of a 2-D array of DRAM
cells connected to a single row of sense ampliVers, also referred to
as the row buUer. A DRAM cell consists of two components: 1) a
capacitor, which represents logical state in terms of charge, and 2)
an access transistor that determines if the cell is currently being
accessed. A sense ampliVer is a component that is used to sense
the state of the DRAM cell and amplify the state to a stable voltage
level. The wire that connects the DRAM cell to the corresponding
sense ampliVer is called a bitline and the wire that controls the ac-
cess transistor of a DRAM cell is called a wordline. Each subarray
contains a row decoding logic that determines which row of cells
(if any) is currently being accessed.

At a high level, accessing a cache line from a subarray involves
three steps: 1) activating the row containing the cache line – this
copies the data from the row of DRAM cells to the row buUer,
2) reading/writing the cache line – this transfers the data from/to
the corresponding sense ampliVers within the row buUer to/from
the processor through the internal bus shared by all the banks,
and 3) precharging the subarray – this clears the sense ampliVers
and prepares the subarray for a subsequent access.
Figure 3 pictorially shows the three steps of a subarray access.

In the initial precharged state Ê, the sense ampliVers and the bit-
lines are maintained at an equilibrium voltage level of 1

2
VDD (half

the maximum voltage, VDD). The row decoder is fed with a sen-
tinel input (—), such that all the wordlines within the subarray are
lowered, i.e., no row is connected to the sense ampliVers.

To access data from a row A of a subarray, the DRAM con-
troller Vrst issues an ACTIVATE command with the row address.
Upon receiving this command, the bank feeds the row decoder
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Figure 2: Internal organization of a DRAM subarray

of the corresponding subarray with the address A, which raises
the wordline of the corresponding row. As a result, all cells of the
row are connected to the corresponding bitlines and in turn to the
sense ampliVers. Depending on the initial state of the cells, they
lose/gain charge, thereby raising/lowering the voltage level on the
corresponding bitlines (state Ë). In this state, the sense ampliVers
detect the deviation from 1

2
VDD and begin to amplify the devia-

tion (state Ì). In the process, they also drive the DRAM cells back
to their original state. Once the ampliVcation process is complete,
all the sense ampliVers and bitlines are at a stable state (VDD or 0)
and the cells are fully restored to their initial state (state Í).
The required data can be accessed from the sense ampliVers

as soon as their voltage levels reach a threshold (state Ì). This
is done by issuing a READ or WRITE command to the bank with
the corresponding column address. Upon receiving the READ com-
mand, the bank I/O logic (Figure 1) accesses the required data
from the corresponding sense ampliVers using a set of global
bitlines that are shared across all subarrays [31] (not shown in
the Vgure for clarity) and transfers the data to the shared in-
ternal bus outside the bank. From there, the data is transferred
on to the memory channel connecting the DRAM and the mem-
ory controller. The WRITE command operates similarly except the
data Wows in the opposite direction. If the subsequent access is
to the same row, then it can be performed by simply issuing a
READ/WRITE command while the row is still activated.

When the DRAM controller wants to access data from a dif-
ferent row in the bank, it must Vrst take the subarray back to
the precharged state. This is done by issuing the PRECHARGE com-
mand to the bank. The precharge operation involves two steps.
First, it feeds the row decoder with the sentinel input (—), low-
ering the wordline corresponding to the currently activated row.
This essentially disconnects the cells from the corresponding bit-
lines. Second, it drives the sense ampliVers and the bitlines back
to the equilibrium voltage level of 1

2
VDD (state Ï – we intention-

ally ignore state Î for now as it is part of our mechanism to be
described in Section 3.1).

In the following section, we describe the design and implemen-
tation of RowClone, which exploits the afore-described internal
organization of DRAM to accelerate bulk data operations within
DRAM while incurring low implementation cost.
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3. ROWCLONE: DETAILED DESIGN
RowClone consists of two mechanisms based on two observa-

tions about DRAM operation. First, in order to access any data
(even a single byte), DRAM internally transfers an entire row of
data from the DRAM cells to the corresponding row buUer. Our
Vrst mechanism exploits this observation to eXciently copy data
between two rows that share a row buUer. We call this the Fast
Parallel Mode (FPM). Second, a single internal bus is shared across
all banks within a chip to perform both read and write operations.
Our second mechanism exploits this observation to copy cache
lines between two banks in a pipelined manner. We call this the
Pipelined Serial Mode (PSM). Although not as fast as FPM, PSM
has fewer constraints and hence is more generally applicable. We
now describe each of these modes in detail.

3.1 Fast Parallel Mode (FPM)
The Fast Parallel Mode is designed to copy data from a source

row to a destination row within the same subarray. FPM exploits
the fact that DRAM has the ability to transfer an entire row of
data from the DRAM cells to the corresponding row buUer. FPM
Vrst copies the data from the source row to the row buUer and
then copies the data from the row buUer to the destination row.
The observation behind FPM’s implementation is as follows:

If a DRAM cell is connected to a bitline that is at a stable
state (either VDD or 0) instead of the equilibrium state
( 1
2
VDD), then the data in the cell is overwritten with the

data (voltage level) on the bitline.

The reason for this behavior is that the cell induces only a small
perturbation in the voltage level of the bitline. Therefore, when
the bitline is at a stable state, any perturbation caused by the cell
on the bitline is so small that the sense ampliVer drives the bitline
(and hence the cell) back to the original stable state of the bitline.

To copy data from a source row (src) to a destination row (dst)
within the same subarray, FPM Vrst activates the source row. At
the end of the activation, the sense ampliVers and the bitlines are
in a stable state corresponding to the data of the source row. The
cells of the source row are fully restored to their original state.
This is depicted by state Í in Figure 4. In this state, simply lower-
ing the wordline of src and raising the wordline corresponding to
dst connects the cells of the destination row with the stable bit-
lines. Based on the observation made above, doing so overwrites
the data on the cells of the destination row with the data on the
bitlines, as depicted by state Î in Figure 4.3
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Figure 4: Fast Parallel Mode of RowClone

Implementation. Lowering the wordline corresponding to
src and raising the wordline corresponding to dst can be
achieved by simply changing the input to the subarray row de-
coder from src to dst. While issuing an ACTIVATE to the dst row

3A recent prior work, TL-DRAM [34], uses this observation to
move data between two segments within the same subarray.

will achieve this eUect, modern DRAM chips do not allow an-
other ACTIVATE to an already activated bank – the expected result
of such an action is undeVned. This is because a modern DRAM
chip allows at most one row (subarray) within each bank to be
activated. If a bank that already has a row (subarray) activated re-
ceives an ACTIVATE to a diUerent subarray, the currently activated
subarray must Vrst be precharged [31].4

To support FPM, we propose the following change to the
DRAM chip in the way it handles back-to-back ACTIVATEs. When
an already activated bank receives an ACTIVATE to a row, the chip
processes the command similar to any other ACTIVATE if and only
if the command is to a row that belongs to the currently activated
subarray. If the row does not belong to the currently activated
subarray, then the chip takes the action it normally does with
back-to-back ACTIVATEs—e.g., drop it. Since the logic to determine
the subarray corresponding to a row address is already present in
today’s chips, implementing FPM only requires a comparison to
check if the row address of an ACTIVATE belongs to the currently
activated subarray, the cost of which is almost negligible.

Summary. To copy data from src to dst within the same
subarray, FPM Vrst issues an ACTIVATE to src. This copies the
data from src to the subarray row buUer. FPM then issues an
ACTIVATE to dst. This modiVes the input to the subarray row-
decoder from src to dst and connects the cells of dst row to
the row buUer. This, in eUect, copies the data from the sense
ampliVers to the destination row. As we show in Section 7.1, with
these two steps, FPM copies a 4KB page of data 11.6x faster and
with 74.4x less energy than an existing system.

Limitations. FPM has two constraints that limit its general
applicability. First, it requires the source and destination rows to
be within the same subarray. Second, it cannot partially copy data
from one row to another. Despite these limitations, we show that
FPM can be immediately applied to today’s systems to acceler-
ate two commonly used primitives in modern systems – Copy-
on-Write and Bulk Zeroing (Section 5). In the following section,
we describe the second mode of RowClone – the Pipelined Serial
Mode (PSM). Although not as fast or energy-eXcient as FPM, PSM
addresses these two limitations of FPM.

3.2 Pipelined Serial Mode (PSM)
The Pipelined Serial Mode eXciently copies data from a source

row in one bank to a destination row in a diUerent bank. PSM
exploits the fact that a single internal bus that is shared across all
the banks is used for both read and write operations. This enables
the opportunity to copy an arbitrary quantity of data one cache
line at a time from one bank to another in a pipelined manner.

More speciVcally, to copy data from a source row in one bank to
a destination row in a diUerent bank, PSM Vrst activates the corre-
sponding rows in both banks. It then puts the source bank in the
read mode, the destination bank in the write mode, and transfers
data one cache line (corresponding to a column of data—64 bytes)
at a time. For this purpose, we propose a new DRAM command
called TRANSFER. The TRANSFER command takes four parameters:
1) source bank index, 2) source column index, 3) destination bank
index, and 4) destination column index. It copies the cache line
corresponding to the source column index in the activated row of
the source bank to the cache line corresponding to the destination
column index in the activated row of the destination bank.

Unlike READ/WRITE which interact with the memory channel
connecting the processor and main memory, TRANSFER does not
transfer data outside the chip. Figure 5 pictorially compares the
4Some DRAM manufacturers design their chips to drop back-to-
back ACTIVATEs to the same bank.
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operation of the TRANSFER command with that of READ and WRITE.
The dashed lines indicate the data Wow corresponding to the three
commands. As shown in the Vgure, in contrast to the READ or
WRITE commands, TRANSFER does not transfer data from or to the
memory channel.

Source Row
Row BuUer

Bank I/O

Destination Row
Row BuUer

Bank I/O

Source Bank Destination Bank

Chip

Internal Data Bus

To Memory Channel

READ WRITE

Chip I/O

TRANSFER

Figure 5: Pipelined Serial Mode of RowClone

Implementation. Implementing TRANSFER requires changes to
1) the DRAM chip and 2) the DRAM interface. First, the chip
I/O logic should be augmented with logic to disconnect the in-
ternal DRAM bus from the memory channel during a TRANSFER

and logic to transfer data appropriately between banks. Our cal-
culations using a publicly available 2Gb 55nm DDR3 DRAM tech-
nology model [43] show that these changes (additional muxes)
incur only a 0.01% die area cost. Second, the memory controller
needs to provide four parameters along with TRANSFER. To mini-
mize the changes to the existing DRAM interface, we make TRANS-
FER a two-cycle command. In the Vrst cycle, the controller sends
TRANSFER with the source bank ID and the source column index,
and in the second cycle, it sends the destination bank ID and the
destination column index.
Summary. To copy data from a source row in one bank to a
destination row in a diUerent bank, PSM Vrst activates the cor-
responding rows in each bank. For each cache line to be copied
between the two rows, PSM issues TRANSFER with the appropri-
ate parameters. By overlapping the latency of the read and write
operations involved in the copy, PSM results in a 1.9x reduction
in latency and 3.2x reduction in energy of a 4KB bulk copy op-
eration compared to performing the required operations over the
memory channel.

3.3 Mechanism for Bulk Data Copy
When the data from a source row (src) needs to be copied to a

destination row (dst), there are three possible cases depending on
the location of src and dst: 1) src and dst are within the same
subarray, 2) src and dst are in diUerent banks, 3) src and dst

are in diUerent subarrays within the same bank. For case 1 and
case 2, RowClone uses FPM and PSM, respectively, to complete
the operation (as described in Sections 3.1 and 3.2).

For the third case, when src and dst are in diUerent subar-
rays within the same bank, one can imagine a mechanism that
uses the global bitlines (shared across all subarrays within a bank
– described in [31]) to copy data across the two rows in diUerent
subarrays. However, we do not employ such a mechanism for two
reasons. First, it is not possible in today’s DRAM chips to activate
multiple subarrays within the same bank simultaneously. Second,
even if we enable simultaneous activation of multiple subarrays,
as in [31], transferring data from one row buUer to another us-
ing the global bitlines requires the bank I/O circuitry to switch
between read and write modes for each cache line transfer. This
switching incurs signiVcant latency overhead. To keep our de-
sign simple, for such an intra-bank copy operation, our mecha-

nism uses PSM to Vrst copy the data from src to a temporary row
(tmp) in a diUerent bank. It then uses PSM again to copy the data
back from tmp to dst. The capacity lost due to reserving one row
within each bank is negligible (0.0015% for a bank with 64k rows).

3.4 Mechanism for Bulk Data Initialization
Bulk data initialization sets a large block of memory to a spe-

ciVc value. To perform this operation eXciently, our mechanism
Vrst initializes a single DRAM row with the corresponding value.
It then uses the appropriate copy mechanism (from Section 3.3) to
copy the data to the other rows to be initialized.

Bulk Zeroing (or BuZ), a special case of bulk initialization, is
a frequently occurring operation in today’s systems [28, 58]. To
accelerate BuZ, one can reserve one row in each subarray that
is always initialized to zero. By doing so, our mechanism can
use FPM to eXciently BuZ any row in DRAM by copying data
from the reserved zero row of the corresponding subarray into
the destination row. The capacity loss of reserving one row out of
512 rows in each subarray is very modest (0.2%).

Although the reserved zero rows can potentially lead to gaps
in the physical address space, we can use an appropriate mem-
ory interleaving technique that maps consecutive rows to diUer-
ent subarrays. Such a technique ensures that the reserved zero
rows are contiguously located in the physical address space. Note
that interleaving techniques commonly used in today’s systems
(e.g., row or cache line interleaving [39]) have this property.

4. END-TO-END SYSTEM DESIGN
So far, we described RowClone, a DRAM substrate that can ef-

Vciently perform bulk data copy and initialization. In this section,
we describe the changes to the ISA, the processor microarchitec-
ture and the operating system that will enable the system to eX-
ciently exploit the RowClone DRAM substrate.

4.1 ISA Support
To enable the software to communicate occurrences of bulk

copy and initialization operations to the hardware, we introduce
two new instructions to the ISA: memcopy and meminit. Table 1
describes the semantics of these two new instructions. We de-
liberately keep the semantics of the instructions simple in order
to relieve the software from worrying about microarchitectural
aspects of RowClone such as row size, alignment, etc. (discussed
in Section 4.2.1). Note that such instructions are already present
in some of the instructions sets in modern processors – e.g., rep
movsd, rep stosb, ermsb in x86 [20] and mvcl in IBM S/390 [19].

Instruction Operands Semantics

memcopy src, dst, size Copy size bytes from src to dst
meminit dst, size, val Set size bytes to val at dst

Table 1: Semantics of the memcopy and meminit instructions

There are three points to note regarding the execution seman-
tics of these operations. First, the processor does not guarantee
atomicity for both memcopy and meminit, but note that exist-
ing systems also do not guarantee atomicity for such operations.
Therefore, the software must take care of atomicity requirements
using explicit synchronization. However, the microarchitectural
implementation will ensure that any data in the on-chip caches
is kept consistent during the execution of these operations (Sec-
tion 4.2.2). Second, the processor will handle any page faults dur-
ing the execution of these operations. Third, the processor can
take interrupts during the execution of these operations.

5



4.2 Processor Microarchitecture Support
The microarchitectural implementation of the new instruc-

tions, memcopy and meminit, has two parts. The Vrst part de-
termines if a particular instance of memcopy or meminit can be
fully/partially accelerated by RowClone. The second part involves
the changes required to the cache coherence protocol to ensure
coherence of data in the on-chip caches. We discuss these parts in
this section.

4.2.1 Source/Destination Alignment and Size
For the processor to accelerate a copy/initialization operation

using RowClone, the operation must satisfy certain alignment and
size constraints. SpeciVcally, for an operation to be accelerated by
FPM, 1) the source and destination regions should be within the
same subarray, 2) the source and destination regions should be
row-aligned, and 3) the operation should span an entire row. On
the other hand, for an operation to be accelerated by PSM, the
source and destination regions should be cache line-aligned and
the operation must span a full cache line.

Upon encountering a memcopy/meminit instruction, the pro-
cessor divides the region to be copied/initialized into three por-
tions: 1) row-aligned row-sized portions that can be accelerated
using FPM, 2) cache line-aligned cache line-sized portions that can
be accelerated using PSM,5 and 3) the remaining portions that can
be performed by the processor. For the Vrst two regions, the pro-
cessor sends appropriate requests to the memory controller which
completes the operations and sends an acknowledgment back to
the processor. The processor completes the operation for the third
region similarly to how it is done in today’s systems.6

4.2.2 Managing On-Chip Cache Coherence
RowClone allows the memory controller to directly

read/modify data in memory without going through the on-
chip caches. Therefore, to ensure cache coherence, the memory
controller appropriately handles cache lines from the source and
destination regions that may be cached in the on-chip caches
before issuing the copy/initialization operations to memory.

First, the memory controller writes back any dirty cache line
from the source region. This is because the main memory version
of such a cache line is likely stale. Copying the data in-memory
before Wushing such cache lines will lead to stale data being copied
to the destination region. Second, the memory controller invali-
dates any cache line (clean or dirty) from the destination region
that is cached in the on-chip caches. This is because after per-
forming the copy operation, the cached version of these blocks
may contain stale data. The memory controller already has the
ability to perform such Wushes and invalidations to support Di-
rect Memory Access (DMA) [21]. After performing the neces-
sary Wushes and invalidations, the memory controller performs
the copy/initialization operation. To ensure that cache lines of
the destination region are not cached again by the processor in
the meantime, the memory controller blocks all requests (includ-
ing prefetches) to the destination region until the copy or initial-
ization operation is complete.
While simply performing the Wushes and invalidates as men-

tioned above will ensure coherence, we propose a slightly mod-
iVed solution to handle dirty cache lines of the source region to
reduce memory bandwidth consumption. When the memory con-

5Since TRANSFER copies only a single cache line, a bulk copy using
PSM can be interleaved with other commands to memory.
6Note that the CPU can oYoad all these operations to the memory
controller. In such a design, the CPU need not be made aware of
the DRAM organization (e.g., row size, subarray mapping, etc.).

troller identiVes a dirty cache line belonging to the source region
while performing a copy, it creates an in-cache copy of the source
cache line with the tag corresponding to the destination cache
line. This has two beneVts. First, it avoids the additional memory
Wush required for the dirty source cache line. Second and more
importantly, the controller does not have to wait for all the dirty
source cache lines to be Wushed before it can perform the copy.7

Although RowClone requires the memory controller to man-
age cache coherence, it does not aUect memory consistency — i.e.,
concurrent readers or writers to the source or destination regions
involved in the copy/initialization. As mentioned before, a bulk
copy/initialization operation is not guaranteed to be atomic even
in current systems, and the software needs to explicitly perform
the operation within a critical section to ensure atomicity.

4.3 Software Support
The minimum support required from the system software is the

use of the proposed memcopy and meminit instructions to indi-
cate bulk data operations to the processor. Although one can have
a working system with just this support, maximum latency and
energy beneVts can be obtained if the hardware is able to acceler-
ate most copy operations using FPM rather than PSM. Increasing
the likelihood of the use of the FPMmode requires further support
from the operating system (OS) on two aspects: 1) page mapping,
and 2) granularity of copy/initialization.

4.3.1 Subarray-Aware Page Mapping
The use of FPM requires the source row and the destination row

of a copy operation to be within the same subarray. Therefore, to
maximize the use of FPM, the OS page mapping algorithm should
be aware of subarrays so that it can allocate a destination page of
a copy operation in the same subarray as the source page. More
speciVcally, the OS should have knowledge of which pages map to
the same subarray in DRAM. We propose that DRAM expose this
information to software using the small EEPROM that already ex-
ists in today’s DRAM modules. This EEPROM, called the Serial
Presence Detect (SPD) [26], stores information about the DRAM
chips that is read by the memory controller at system bootup. Ex-
posing the subarray mapping information will require only a few
additional bytes to communicate the bits of the physical address
that map to the subarray index.8

Once the OS has the mapping information between physical
pages and subarrays, it can maintain multiple pools of free pages,
one pool for each subarray. When the OS allocates the destination
page for a copy operation (e.g., for a Copy-on-Write operation), it
chooses the destination page from the same pool (subarray) as the
source page. Note that this approach does not require contiguous
pages to be placed within the same subarray. As mentioned be-
fore, commonly used memory interleaving techniques spread out
contiguous pages across as many banks/subarrays as possible to
improve parallelism. Therefore, both the source and destination
of a bulk copy operation can be spread out across many subarrays.

7In Section 7.3, we will consider another optimization, called
RowClone-Zero-Insert, which inserts clean zero cache lines into
the cache to further optimize Bulk Zeroing. This optimization
does not require further changes to our proposed modiVcations to
the cache coherence protocol.
8To increase DRAM yield, DRAM manufacturers design chips
with spare rows that can be mapped to faulty rows [18]. Our
mechanism can work with this technique by either requiring that
each faulty row is remapped to a spare row within the same sub-
array, or exposing the location of all faulty rows to the memory
controller so that it can use PSM to copy data across such rows.
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4.3.2 Granularity of Copy/Initialization
The second aspect that aUects the use of FPM is the granularity

at which data is copied/initialized. FPM has a minimum granular-
ity at which it can copy/initialize data. There are two factors that
aUect this minimum granularity: 1) the size of each DRAM row,
and 2) the memory interleaving employed by the controller.

First, FPM copies all the data of the source row to the desti-
nation row (across the entire DIMM). Therefore, the minimum
granularity of copy using FPM is at least the size of the row. Sec-
ond, to extract maximum bandwidth, some memory interleaving
techniques, like cache line interleaving, map consecutive cache
lines to diUerent memory channels in the system. Therefore, to
copy/initialize a contiguous region of data with such interleaving
strategies, FPM must perform the copy operation in each channel.
The minimum amount of data copied by FPM in such a scenario
is the product of the row size and the number of channels.

To maximize the likelihood of using FPM, the system or appli-
cation software must ensure that the region of data copied (initial-
ized) using the memcopy (meminit) instructions is at least as large
as this minimum granularity. For this purpose, we propose to ex-
pose this minimum granularity to the software through a special
register, which we call the Minimum Copy Granularity Register
(MCGR). On system bootup, the memory controller initializes the
MCGR based on the row size and the memory interleaving strat-
egy, which can later be used by the OS for eUectively exploiting
RowClone. Note that some previously proposed techniques such
as sub-wordline activation [54] or mini-rank [56, 60] can be com-
bined with RowClone to reduce the minimum copy granularity,
further increasing the opportunity to use FPM.

5. APPLICATIONS
RowClone can be used to accelerate any bulk copy and initial-

ization operation to improve both system performance and en-
ergy eXciency. In this paper, we quantitatively evaluate the eX-
cacy of RowClone by using it to accelerate two primitives widely
used by modern system software: 1) Copy-on-Write and 2) Bulk
Zeroing. We now describe these primitives followed by several
applications that frequently trigger them.

5.1 Primitives Accelerated by RowClone
Copy-on-Write (CoW) is a technique used by most modern oper-

ating systems (OS) to postpone an expensive copy operation until
it is actually needed. When data of one virtual page needs to be
copied to another, instead of creating a copy, the OS points both
virtual pages to the same physical page (source) and marks the
page as read-only. In the future, when one of the sharers attempts
to write to the page, the OS allocates a new physical page (desti-
nation) for the writer and copies the contents of the source page
to the newly allocated page. Fortunately, prior to allocating the
destination page, the OS already knows the location of the source
physical page. Therefore, it can ensure that the destination is al-
located in the same subarray as the source, thereby enabling the
processor to use FPM to perform the copy.

Bulk Zeroing (BuZ) is an operation where a large block of mem-
ory is zeroed out. As mentioned in Section 3.4, our mechanism
maintains a reserved row that is fully initialized to zero in each
subarray. For each row in the destination region to be zeroed out,
the processor uses FPM to copy the data from the reserved zero-
row of the corresponding subarray to the destination row.

5.2 Applications that Use CoW/BuZ
We now describe seven example applications or use-cases that

extensively use the CoW or BuZ operations. Note that these are

just a small number of example scenarios that incur a large num-
ber of copy and initialization operations.

Process Forking. fork is a frequently-used system call in mod-
ern operating systems (OS). When a process (parent) calls fork,
it creates a new process (child) with the exact same memory im-
age and execution state as the parent. This semantics of fork
makes it useful for diUerent scenarios. Common uses of the fork
system call are to 1) create new processes, and 2) create stateful
threads from a single parent thread in multi-threaded programs.
One main limitation of fork is that it results in a CoW operation
whenever the child/parent updates a shared page. Hence, despite
its wide usage, as a result of the large number of copy operations
triggered by fork, it remains one of the most expensive system
calls in terms of memory performance [47].

Initializing Large Data Structures. Initializing large data struc-
tures often triggers Bulk Zeroing. In fact, many managed lan-
guages (e.g., C#, Java, PHP) require zero initialization of variables
to ensure memory safety [58]. In such cases, to reduce the over-
head of zeroing, memory is zeroed-out in bulk.

Secure Deallocation. Most operating systems (e.g., Linux [7],
Windows [45], Mac OS X [48]) zero out pages newly allocated to a
process. This is done to prevent malicious processes from gaining
access to the data that previously belonged to other processes or
the kernel itself. Not doing so can potentially lead to security
vulnerabilities, as shown by prior works [9, 13, 16, 17].

Process Checkpointing. Checkpointing is an operation during
which a consistent version of a process state is backed-up, so
that the process can be restored from that state in the future.
This checkpoint-restore primitive is useful in many cases includ-
ing high-performance computing servers [6], software debugging
with reduced overhead [50], hardware-level fault and bug toler-
ance mechanisms [10, 11], and speculative OS optimizations to
improve performance [8, 57]. However, to ensure that the check-
point is consistent (i.e., the original process does not update data
while the checkpointing is in progress), the pages of the process
are marked with copy-on-write. As a result, checkpointing often
results in a large number of CoW operations.

Virtual Machine Cloning/Deduplication. Virtual machine (VM)
cloning [33] is a technique to signiVcantly reduce the startup cost
of VMs in a cloud computing server. Similarly, deduplication is
a technique employed by modern hypervisors [55] to reduce the
overall memory capacity requirements of VMs. With this tech-
nique, diUerent VMs share physical pages that contain the same
data. Similar to forking, both these operations likely result in a
large number of CoW operations for pages shared across VMs.

Page Migration. Bank conWicts, i.e., concurrent requests to dif-
ferent rows within the same bank, typically result in reduced row
buUer hit rate and hence degrade both system performance and
energy eXciency. Prior work [53] proposed techniques to miti-
gate bank conWicts using page migration. The PSM mode of Row-
Clone can be used in conjunction with such techniques to 1) sig-
niVcantly reduce the migration latency and 2) make the migra-
tions more energy-eXcient.

CPU-GPU Communication. In many current and future proces-
sors, the GPU is or is expected to be integrated on the same chip
with the CPU. Even in such systems where the CPU and GPU
share the same oU-chip memory, the oU-chip memory is parti-
tioned between the two devices. As a consequence, whenever a
CPU program wants to oYoad some computation to the GPU, it
has to copy all the necessary data from the CPU address space
to the GPU address space [23]. When the GPU computation is
Vnished, all the data needs to be copied back to the CPU address
space. This copying involves a signiVcant overhead. By spreading
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out the GPU address space over all subarrays and mapping the ap-
plication data appropriately, RowClone can signiVcantly speed up
these copy operations. Note that communication between diUer-
ent processors and accelerators in a heterogeneous System-on-a-
chip (SoC) is done similarly to the CPU-GPU communication and
can also be accelerated by RowClone.

In the following sections, we quantitatively compare RowClone
to existing systems and show that RowClone signiVcantly im-
proves both system performance and energy eXciency.

6. METHODOLOGY
Simulation. Our evaluations use an in-house cycle-level multi-
core simulator along with a cycle-accurate command-level DDR3
DRAM simulator. The multi-core simulator models out-of-order
cores, each with a private last-level cache.9 We integrate Row-
Clone into the simulator at the command-level. We use DDR3
DRAM timing constraints [27] to calculate the latency of diUer-
ent operations. Since TRANSFER operates similarly to READ/WRITE,
we assume TRANSFER to have the same latency as READ/WRITE. For
our energy evaluations, we use DRAM energy/power models from
Rambus [43] and Micron [36]. Although, in DDR3 DRAM, a row
corresponds to 8KB across a rank, we assume a minimum in-
DRAM copy granularity (Section 4.3.2) of 4KB – same as the page
size used by the operating system (Debian Linux) in our evalua-
tions. For this purpose, we model a DRAM module with 512-byte
rows per chip (4KB across a rank). Table 2 speciVes the major
parameters used for our simulations.

Component Parameters

Processor
1–8 cores, OoO 128-entry window,
3-wide issue, 8 MSHRs/core

Last-level Cache
1MB per core, private,
64-byte cache line, 16-way associative

Memory Controller
One per channel, 64-entry read queue,
64-entry write queue

Memory System
DDR3-1066 (8-8-8) [27], 2 channels,
1 rank per channel, 8 banks per rank,

Table 2: ConVguration of the simulated system

Workloads. We evaluate the beneVts of RowClone using 1) a
case study of the fork system call, an important operation used
by modern operating systems, 2) six copy/initialization inten-
sive benchmarks: bootup, compile, forkbench, memcached [2],
mysql [3], and shell (Section 7.3 describes these benchmarks),
and 3) a wide variety of multi-core workloads comprising
the copy/initialization intensive applications running alongside
memory-intensive applications from the SPEC CPU2006 bench-
mark suite [51]. Note that benchmarks such as SPEC CPU2006,
which predominantly stress the CPU, typically use a small num-
ber of page copy and initialization operations and therefore would
serve as poor individual evaluation benchmarks for RowClone.

We collected instruction traces for our workloads using
Bochs [1], a full-system x86-64 functional emulator, running a
GNU/Linux system. We modify the kernel’s implementation of
page copy/initialization to use the memcopy and meminit instruc-
tions and mark these instructions in our traces.10 We collect 1-
9Since our mechanism primarily aUects oU-chip memory traXc,
we expect our results and conclusions to be similar with shared
caches as well.
10For our fork benchmark (described in Section 7.2), we used the
Wind River Simics full system simulator [4] to collect the traces.

billion instruction traces of the representative portions of these
workloads. We use the instruction throughput (IPC) metric to
measure single-core performance. We evaluate multi-core runs
using the weighted speedup metric, a widely-used measure of sys-
tem throughput for multi-programmed workloads [14], as well
as Vve other performance/fairness/bandwidth/energy metrics, as
shown in Table 7.

7. EVALUATIONS
In this section, we quantitatively evaluate the beneVts of Row-

Clone. We Vrst analyze the raw latency and energy improvement
enabled by the DRAM substrate to accelerate a single 4KB copy
and 4KB zeroing operation (Section 7.1). We then discuss the re-
sults of our evaluation of RowClone using fork (Section 7.2) and
six copy/initialization intensive applications (Section 7.3). Sec-
tion 7.4 presents our analysis of RowClone on multi-core sys-
tems and Section 7.5 provides quantitative comparisons to mem-
ory controller based DMA engines.

7.1 Latency and Energy Analysis
Figure 6 shows the sequence of DRAM commands issued by the

baseline, FPM and PSM (inter-bank) to perform a 4KB copy oper-
ation. The Vgure also shows the overall latency incurred by each
of these mechanisms, assuming DDR3-1066 timing constraints.
Note that a 4KB copy involves copying 64 64B cache lines. For
ease of analysis, only for this section, we assume that no cache
line from the source or the destination region are cached in the
on-chip caches. While the baseline serially reads each cache line
individually from the source page and writes it back individually
to the destination page, FPM parallelizes the copy operation of
all the cache lines by using the large internal bandwidth available
within a subarray. PSM, on the other hand, uses the new TRANSFER

command to overlap the latency of the read and write operations
involved in the page copy.

ACT s R1 R2 ...‖ ... R64 PRE ACT d W1 W2 ...‖ ... W64 PRE

1046ns

ACT s ACT d PRE

90ns

ACT s ACT d Tr1 Tr2 ...‖ ... Tr64 PRE PRE

540ns

Baseline

FPM

PSM (Inter-bank)

time

ACT s — ACTIVATE source, ACT d — ACTIVATE destination
R — READ, W — WRITE, Tr — TRANSFER, PRE — PRECHARGE

Figure 6: Command sequence and latency for Baseline,
FPM, and Inter-bank PSM for a 4KB copy operation. Intra-
bank PSM simply repeats the operations for Inter-bank
PSM twice (source row to temporary row and temporary
row to destination row). The Vgure is not drawn to scale.

Table 3 shows the reduction in latency and energy consump-
tion due to our mechanisms for diUerent cases of 4KB copy and
zeroing operations. To be fair to the baseline, the results include
only the energy consumed by the DRAM and the DRAM channel.
We draw two conclusions from our results.

First, FPM signiVcantly improves both the latency and the en-
ergy consumed by bulk data operations — 11.6x and 6x reduction
in latency of 4KB copy and zeroing, and 74.4x and 41.5x reduction
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Mechanism

Absolute Reduction
Memory Memory

Latency Energy Latency Energy
(ns) (µJ)

C
op

y

Baseline 1046 3.6 1.00x 1.0x
FPM 90 0.04 11.62x 74.4x

Inter-Bank - PSM 540 1.1 1.93x 3.2x
Intra-Bank - PSM 1050 2.5 0.99x 1.5x

Z
er
o Baseline 546 2.0 1.00x 1.0x

FPM 90 0.05 6.06x 41.5x

Table 3: DRAM latency and memory energy reductions due
to RowClone

in memory energy of 4KB copy and zeroing. Second, although
PSM does not provide as much beneVt as FPM, it still reduces the
latency and energy of a 4KB inter-bank copy by 1.9x and 3.2x,
while providing a more generally applicable mechanism.

When an on-chip cache is employed, any line cached from the
source or destination page can be served at a lower latency than
accessing main memory. As a result, in such systems, the baseline
will incur a lower latency to perform a bulk copy or initializa-
tion compared to a system without on-chip caches. However, as
we show in the following sections (7.2–7.4), even in the presence
of on-chip caching, the raw latency/energy improvement due to
RowClone translates to signiVcant improvements in both overall
system performance and energy eXciency.

7.2 The fork System Call
As mentioned in Section 5.2, fork is one of the most expensive

yet frequently-used system calls in modern systems [47]. Since
fork triggers a large number of CoW operations (as a result of
updates to shared pages from the parent or child process), Row-
Clone can signiVcantly improve the performance of fork.

To analyze this, we use a simple benchmark, forkbench. The
performance of fork depends on two parameters: 1) the size
of the address space used by the parent—which determines how
much data may potentially have to be copied, and 2) the number
of pages updated after the fork operation by either the parent or
the child—which determines how much data are actually copied.
To exercise these two parameters, forkbench Vrst creates an ar-
ray of size S and initializes the array with random values. It then
forks itself. The child process updates N random pages (by up-
dating a cache line within each page) and exits; the parent process
waits for the child process to complete before exiting itself.

As such, we expect the number of copy operations to depend
on N—the number of pages copied. Therefore, one may expect
RowClone’s performance beneVts to be proportional to N . How-
ever, an application’s performance typically depends on the over-
all memory access rate [52], and RowClone can only improve per-
formance by reducing the memory access rate due to copy opera-
tions. As a result, we expect the performance improvement due to
RowClone to primarily depend on the fraction of memory traXc
(total bytes transferred over the memory channel) generated by
copy operations. We refer to this fraction as FMTC—Fraction of
Memory TraXc due to Copies.

Figure 7 plots FMTC of forkbench for diUerent values of S
(64MB and 128MB) and N (2 to 16k) in the baseline system. As
the Vgure shows, for both values of S , FMTC increases with in-
creasing N . This is expected as a higher N (more pages updated
by the child) leads to more CoW operations. However, because of
the presence of other read/write operations (e.g., during the ini-
tialization phase of the parent), for a given value of N , FMTC is

larger for S = 64MB compared to S = 128MB. Depending on the
value of S and N , anywhere between 14% to 66% of the memory
traXc arises from copy operations. This shows that accelerating
copy operations using RowClone has the potential to signiVcantly
improve the performance of the fork operation.
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Figure 7: FMTC of forkbench for varying S and N

Figure 8 plots the performance (IPC) of FPM and PSM for fork-
bench, normalized to that of the baseline system. We draw two
conclusions from the Vgure. First, FPM signiVcantly improves the
performance of forkbench for both values of S and most values
of N . The peak performance improvement is 2.2x for N = 16k
(30% on average across all data points). As expected, the perfor-
mance improvement of FPM increases as the number of pages up-
dated increases. The trend in performance improvement of FPM
is similar to that of FMTC (Figure 7), conVrming our hypothe-
sis that FPM’s performance improvement primarily depends on
FMTC. Second, PSM does not provide considerable performance
improvement over the baseline. This is because the large on-chip
cache in the baseline system buUers the writebacks generated by
the copy operations. These writebacks are Wushed to memory at
a later point without further delaying the copy operation. As a
result, PSM, which just overlaps the read and write operations in-
volved in the copy, does not improve latency signiVcantly in the
presence of a large on-chip cache. On the other hand, FPM, by
copying all cache lines from the source row to destination in par-
allel, signiVcantly reduces the latency compared to the baseline
(which still needs to read the source blocks from main memory),
resulting in high performance improvement.
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Figure 8: Performance improvement due to RowClone for
forkbench with diUerent values of S and N

Figure 9 shows the reduction in DRAM energy consumption
(considering both the DRAM and the memory channel) of FPM
and PSM modes of RowClone compared to that of the baseline for
forkbench with S = 64MB. Similar to performance, the overall
DRAM energy consumption also depends on the total memory
access rate. As a result, RowClone’s potential to reduce DRAM
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energy depends on the fraction of memory traXc generated by
copy operations. In fact, our results also show that the DRAM
energy reduction due to FPM and PSM correlate well with FMTC
(Figure 7). By eXciently performing the copy operations, FPM
reduces DRAM energy consumption by up to 80% (average 50%,
across all data points). Similar to FPM, the energy reduction of
PSM also increases with increasingN with a maximum reduction
of 9% for N=16k.
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Figure 9: Comparison of DRAM energy consumption of dif-
ferent mechanisms for forkbench (S = 64MB)

In a system that is agnostic to RowClone (i.e., one that does not
consider the relative performance beneVts of FPM and PSM while
allocating pages), we expect the performance improvement and
energy reduction of RowClone to be in between that of FPM and
PSM. By making the system software aware of RowClone (Sec-
tion 4.3), we can approximate the maximum performance and en-
ergy beneVts by increasing the likelihood of the use of FPM.

7.3 Copy/Initialization Intensive Applications
In this section, we analyze the beneVts of RowClone on six

copy/initialization intensive applications, including one instance
of the forkbench described in the previous section. Table 4 de-
scribes these applications.

Name Description

bootup A phase booting up the Debian operating system.

compile The compilation phase from the GNU C compiler (while
running cc1).

forkbench An instance of the forkbench described in Section 7.2
with S = 64MB and N = 1k.

mcached
Memcached [2], a memory object caching system, a
phase inserting many key-value pairs into the memcache.

mysql MySQL [3], an on-disk database system, a phase loading
the sample employeedb database.

shell
A Unix shell script running ‘Vnd’ on a directory tree with
‘ls’ on each sub-directory (involves Vlesystem accesses
and spawning new processes).

Table 4: Copy/Initialization-intensive benchmarks

Figure 10 plots the fraction of memory traXc due to copy, ini-
tialization, and regular read/write operations for the six applica-
tions. For these applications, between 10% and 80% of the memory
traXc is generated by copy and initialization operations.

Figure 11 compares the IPC of the baseline with that of
RowClone and a variant of RowClone, RowClone-ZI (described
shortly). As can be seen from the Vgure, the RowClone-based
initialization mechanism slightly degrades performance for the
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Figure 10: Fraction of memory traXc due to read, write,
copy and initialization operations

applications which have a negligible number of copy operations
(mcached, compile, and mysql).

Further analysis indicated that, for these applications, although
the operating system zeroes out any newly allocated page, the ap-
plication typically accesses almost all cache lines of a page imme-
diately after the page is zeroed out. There are two phases: 1) the
phase when the OS zeroes out the page, and 2) the phase when the
application accesses the cache lines of the page. While the base-
line incurs cache misses during phase 1, RowClone, as a result of
performing the zeroing operation completely in memory, incurs
cache misses in phase 2. However, the baseline zeroing operation
is heavily optimized for memory-level parallelism (MLP) [40]. In
contrast, the cache misses in phase 2 have low MLP. As a result,
incurring the same misses in Phase 2 (as with RowClone) causes
higher overall stall time for the application (because the latencies
for the misses are serialized) than incurring them in Phase 1 (as in
the baseline), resulting in RowClone’s performance degradation
compared to the baseline.

To address this problem, we introduce a variant of RowClone,
RowClone-Zero-Insert (RowClone-ZI). RowClone-ZI not only ze-
roes out a page in DRAM but it also inserts a zero cache line
into the processor cache corresponding to each cache line in the
page that is zeroed out. By doing so, RowClone-ZI avoids the
cache misses during both phase 1 (zeroing operation) and phase 2
(when the application accesses the cache lines of the zeroed page).
As a result, it improves performance for all benchmarks, notably
forkbench (by 66%) and shell (by 40%), compared to the baseline.
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Figure 11: Performance improvement of RowClone and
RowClone-ZI. Value on top indicates percentage improvement
of RowClone-ZI over baseline.

Table 5 shows the percentage reduction in DRAM energy and
memory bandwidth consumption with RowClone and RowClone-
ZI compared to the baseline. While RowClone signiVcantly
reduces both energy and memory bandwidth consumption for
bootup, forkbench and shell, it has negligible impact on both met-
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rics for the remaining three benchmarks. The lack of energy and
bandwidth beneVts in these three applications is due to serial ex-
ecution caused by the the cache misses incurred when the proces-
sor accesses the zeroed out pages (i.e., phase 2, as described above),
which also leads to performance degradation in these workloads
(as also described above). RowClone-ZI, which eliminates the
cache misses in phase 2, signiVcantly reduces energy consump-
tion (between 15% to 69%) and memory bandwidth consumption
(between 16% and 81%) for all benchmarks compared to the base-
line. We conclude that RowClone-ZI can eUectively improve per-
formance, memory energy, and memory bandwidth eXciency in
page copy and initialization intensive single-core workloads.

Application Energy Reduction Bandwidth Reduction

RowClone +ZI RowClone +ZI

bootup 39% 40% 49% 52%

compile -2% 32% 2% 47%

forkbench 69% 69% 60% 60%

mcached 0% 15% 0% 16%

mysql -1% 17% 0% 21%

shell 68% 67% 81% 81%

Table 5: DRAM energy and bandwidth reduction due to
RowClone and RowClone-ZI (indicated as +ZI)

7.4 Multi-core Evaluations
As RowClone performs bulk data operations completely within

DRAM, it signiVcantly reduces the memory bandwidth consumed
by these operations. As a result, RowClone can beneVt other ap-
plications running concurrently on the same system. We evalu-
ate this beneVt of RowClone by running our copy/initialization-
intensive applications alongside memory-intensive applications
from the SPEC CPU2006 benchmark suite [51] (i.e., those applica-
tions with last-level cache MPKI greater than 1). Table 6 lists the
set of applications used for our multi-programmed workloads.

Copy/Initialization-intensive benchmarks
bootup, compile, forkbench, mcached, mysql, shell

Memory-intensive benchmarks from SPEC CPU2006
bzip2, gcc, mcf, milc, zeusmp, gromacs, cactusADM, leslie3d, namd,
gobmk, dealII, soplex, hmmer, sjeng, GemsFDTD, libquantum, h264ref,
lbm, omnetpp, astar, wrf, sphinx3, xalancbmk

Table 6: List of benchmarks used for multi-core evaluation

We generate multi-programmed workloads for 2-core, 4-core
and 8-core systems. In each workload, half of the cores run
copy/initialization-intensive benchmarks and the remaining cores
run memory-intensive SPEC benchmarks. Benchmarks from each
category are chosen at random.

Figure 12 plots the performance improvement due to Row-
Clone and RowClone-ZI for the 50 4-core workloads we evaluated
(sorted based on the performance improvement due to RowClone-
ZI). Two conclusions are in order. First, although RowClone de-
grades performance of certain 4-core workloads (with compile,
mcached or mysql benchmarks), it signiVcantly improves perfor-
mance for all other workloads (by 10% across all workloads). Sec-
ond, like in our single-core evaluations (Section 7.3), RowClone-
ZI eliminates the performance degradation due to RowClone and
consistently outperforms both the baseline and RowClone for all
workloads (20% on average).
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Figure 12: System performance improvement of RowClone
for 4-core workloads

Table 7 shows the number of workloads and six metrics that
evaluate the performance, fairness, memory bandwidth and en-
ergy eXciency improvement due to RowClone compared to the
baseline for systems with 2, 4, and 8 cores. For all three systems,
RowClone signiVcantly outperforms the baseline on all metrics.

Number of Cores 2 4 8

Number of Workloads 138 50 40

Weighted Speedup [14] Improvement 15% 20% 27%

Instruction Throughput Improvement 14% 15% 25%

Harmonic Speedup [35] Improvement 13% 16% 29%

Maximum Slowdown [12, 29, 30] Reduction 6% 12% 23%

Memory Bandwidth/Instruction [49] Reduction 29% 27% 28%

Memory Energy/Instruction Reduction 19% 17% 17%

Table 7: EUect of RowClone on multi-core performance,
fairness, bandwidth, and energy

To provide more insight into the beneVts of RowClone
on multi-core systems, we classify our copy/initialization-
intensive benchmarks into two categories: 1) Moderately
copy/initialization-intensive (compile, mcached, and mysql) and
highly copy/initialization-intensive (bootup, forkbench, and shell).
Figure 13 shows the average improvement in weighted speedup
for the diUerent multi-core workloads, categorized based on the
number of highly copy/initialization-intensive benchmarks. As
the trends indicate, the performance improvement increases with
increasing number of such benchmarks for all three multi-core
systems, indicating the eUectiveness of RowClone in accelerating
bulk copy/initialization operations.
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Figure 13: EUect of increasing copy/initialization intensity

We conclude that RowClone is an eUective mechanism to im-
prove system performance, energy eXciency and bandwidth eX-
ciency of future, bandwidth-constrained multi-core systems.
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7.5 Memory-Controller-based DMA
One alternative way to perform a bulk data operation is to use

the memory controller to complete the operation using the reg-
ular DRAM interface (similar to some prior approaches [28, 59]).
We refer to this approach as the memory-controller-based DMA
(MC-DMA). MC-DMA can potentially avoid the cache pollution
caused by inserting blocks (involved in the copy/initialization) un-
necessarily into the caches. However, it still requires data to be
transferred over the memory bus. Hence, it suUers from the large
latency, bandwidth, and energy consumption associated with the
data transfer. Because the applications used in our evaluations do
not suUer from cache pollution, we expect the MC-DMA to per-
form comparably or worse than the baseline. In fact, our evalua-
tions show that MC-DMA degrades performance compared to our
baseline by 2% on average for the six copy/initialization intensive
applications (16% compared to RowClone). In addition, the MC-
DMA does not conserve any DRAM energy, unlike RowClone.

8. RELATED WORK
To our knowledge, this is the Vrst paper to propose a concrete

mechanism to perform bulk data copy and initialization opera-
tions completely in DRAM. In this section, we discuss related
work and qualitatively compare them to RowClone.

Patents on Data Copy in DRAM. Several patents [5, 15, 37,
38] propose the abstract notion that the row buUer can be used to
copy data from one row to another. These patents have several
drawbacks. First, they do not provide any concrete mechanism
used to perform the copy operation. Second, while using the row
buUer to copy data between two rows is possible only when the
two rows are within the same subarray, these patents make no
such distinction. Third, these patents do not discuss the support
required from the other layers of the system to realize a work-
ing system. Finally, these patents do not provide any concrete
evaluation to show the beneVts of performing copy operations in-
DRAM. In contrast, RowClone is more generally applicable, and
we discuss concrete changes required to all layers of the system
stack from the DRAM architecture to the system software.

OYoading Copy/Initialization Operations. Prior
works [28, 59] have proposed mechanisms to 1) oYoad bulk
data copy/initialization operations to a separate engine, and
2) reduce the impact of pipeline stalls (by waking up instructions
dependent on a copy operation as soon as the necessary blocks
are copied without waiting for the entire copy operation to
complete), and 3) reduce cache pollution by using hints from
software to decide whether to cache blocks involved in the copy
or initialization. While we have already shown the eUectiveness
of RowClone compared to oYoading bulk data operations to a
separate engine (Section 7.5), the techniques to reduce pipeline
stalls and cache pollution [28] can be naturally combined with
RowClone to further improve performance.

Bulk Memory Initialization. Jarrod et al. [24] propose a
mechanism for avoiding the memory access required to fetch
uninitialized blocks on a store miss by using a specialized cache to
keep track of uninitialized regions of memory. RowClone can po-
tentially be combined with this mechanism. While Jarrod et al.’s
approach can be used to reduce bandwidth consumption for irreg-
ular initialization (initializing diUerent pages with diUerent val-
ues), RowClone can be used to push regular initialization (e.g., ini-
tializing multiple pages with the same values) to DRAM, thereby
freeing up the CPU to perform other useful operations.

Yang et al. [58] propose to reduce the cost of zero initialization
by 1) using non-temporal store instructions to avoid cache pol-

lution, and 2) using idle cores/threads to perform zeroing ahead
of time. While the proposed optimizations reduce the negative
performance impact of zeroing, their mechanism does not reduce
memory bandwidth consumption of the bulk zeroing operations.
In contrast, RowClone signiVcantly reduces the memory band-
width consumption and the associated energy overhead.

Compute-in-Memory. Prior works (e.g., [32, 42]) have in-
vestigated mechanisms to add logic closer to memory to perform
bandwidth-intensive computations (e.g., SIMD vector operations)
more eXciently. The main limitation of such approaches is that
adding logic to DRAM signiVcantly increases the cost of DRAM.
In contrast, RowClone exploits DRAM’s internal organization and
operation to perform bandwidth-intensive copy and initialization
operations quickly and eXciently in DRAM with low cost.

9. CONCLUSION
We introduced RowClone, a new technique for exporting bulk

data copy and initialization operations to DRAM. Based on the key
observation that DRAM can internally transfer multiple kilo-bytes
of data between the DRAM cells and the row buUer, our fastest
mechanism copies an entire row of data between rows that share
a row buUer, with very few changes to the DRAM architecture,
while leading to signiVcant reduction in the latency and energy
of performing bulk copy/initialization. We also propose a more
Wexible mechanism that uses the internal data bus of a chip to eX-
ciently copy data between diUerent banks within a chip. Our eval-
uations using copy and initialization intensive applications show
that RowClone can signiVcantly reduce memory bandwidth con-
sumption for both single-core and multi-core systems (by 28% on
average for 8-core systems), resulting in signiVcant system per-
formance improvement and memory energy reduction (27% and
17%, on average, for 8-core systems).

We conclude that our approach of performing bulk copy and
initialization completely in DRAM is eUective in improving both
system performance and energy eXciency for future, bandwidth-
constrained, multi-core systems. We hope that greatly reducing
the bandwidth, energy and performance cost of bulk data copy
and initialization can lead to new and easier ways of writing data-
intensive applications that would otherwise need to be designed
to avoid bulk data copy and initialization operations.
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