
Next Generation On-Chip Networks:
What Kind of Congestion Control Do We Need?

George Nychis†, Chris Fallin†, Thomas Moscibroda§, Onur Mutlu†

†Carnegie Mellon University
{gnychis,cfallin,onur}@cmu.edu

§Microsoft Research
moscitho@microsoft.com

ABSTRACT
In this paper, we present network-on-chip (NoC) design and
contrast it to traditional network design, highlighting core
differences between NoCs and traditional networks. As an
initial case study, we examine network congestion in buffer-
less NoCs. We show that congestion manifests itself dif-
ferently in a NoC than in a traditional network, and with
application-level awareness in the network to make proper
throttling decisions we improve system performance by up
to 28%. It is our hope that the unique and interesting chal-
lenges of on-chip network design can be met by novel and
effective solutions from the networking community.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiprocessors–
Interconnection architectures; C.2.1 [Network Architecture
and Design]: Packet-switching networks

General Terms
Design, Algorithms, Performance

Keywords
On-chip networks, multi-core, congestion control

1. INTRODUCTION
One of the most important developments in computer sci-

ence and computer architecture in recent years is the trend
towards ever larger multi-core processors to overcome the
diminishing performance returns of designing increasingly
complex single-core processors. In a multi-core chip, ef-
ficient communication between the various components on
the chip (cores, on-chip cache banks, DRAM memory con-
trollers, accelerators, etc) is critical to performance. Many
current multi-core systems are small (2-8 cores), and hence,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

a simple common bus suffices to connect the various compo-
nents. However, chips with hundreds or thousands of cores
are likely to be commonplace [5, 19].1 Connecting so many
cores with a bus is not scalable because 1) electrical loading
on the bus significantly reduces its operational speed, and 2)
the shared bus cannot support the bandwidth demand.

Networks on Chip: The solution to scalably and effi-
ciently connect on-chip components is a packet-switched on-
chip network [7, 3, 4]. A NoC consists of a high-speed router
at each node, connected by links to its neighbors. Although
the NoC may carry various kinds of traffic (e.g. interrupt re-
quests), its most important purpose is to service cache miss
requests. At the heart of this line of research are micro-
architectural questions such as router/link design or efficient
topologies. However, as we discuss in this paper, some of
the key problems in on-chip networks are in fact networking
problems, rather than architectural problems.

NoC Characteristics: NoCs feature a number of special
characteristics: high performance demands, coupled with
hardware implementation constraints, lead to a different trade-
off space for NoCs compared to most traditional off-chip
networks. NoCs run at higher utilization, and traffic pat-
terns do not exhibit flow character (such as in the Internet),
but are characterized by the self-throttling nature of applica-
tions on the various cores. Aspects such as chip area/space,
power consumption,2 and implementation complexity (e.g.
the expense of arbitration and routing logic) are first-class
considerations. These and other characteristics lend on-chip
networks an interesting and unique flavor, and have impor-
tant ramifications on the resulting networking solutions.

Bufferless NoC: The question of how much buffer space
each router should have has been hotly debated in our com-
munity (Internet [1], data center networks [17], etc). In on-
chip networks, a similar discussion has recently occurred.
Here, a paradigm shift towards smaller buffers is based on
the observation that buffers in network routers are expensive
in terms of energy consumption (buffers consume signifi-

1Research chips with 80 cores [12] already exist, one company
recently announced a 100-core processor [23], and Intel has an-
nounced their Single-chip Cloud Computer [13] to service a cloud
with 48 cores.
2Existing prototypes show that NoCs can consume a substan-
tial portion of system power (30% in the Intel 80-core Terascale
chip [12], 40% in the MIT RAW chip [22]).

1

T2 (deflection)

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

Router
Memory

ControllerTo DRAM

0

0

1 2

3

12

T0 T1

T2

T1

S1

S2

D

ageFlit from S2:
ageFlit from S1:

BLESS (X,Y)-Routing Example:
 T0: An L1 miss at S1 generates an
 injection of a flit destined to D,
 and it is routed in the X-dir.

 T1: An L1 miss occurs at S2,
 destined to D, and it is routed in
 the X-dir, as S1's flit is routed in
 the Y-dir to the same node.

 T2: S2's flit is deflected due to
 contention at the router with
 S1's (older) flit for the link to D.

 T3+: S2's flit is routed back in the
 X-dir, then the Y-dir directly to D
 with no contention. (not shown)

Figure 1: 9 core CMP architecture with BLESS routing example.

cant static and dynamic energy [12]), area (75% of the NoC
area is consumed by buffers in the TRIPS prototype [9]), and
hardware complexity (buffer allocation/deallocation). En-
tirely bufferless routing architectures have been proposed
and evaluated where local and temporary traffic overload in
the network is handled purely by means of deflection rout-
ing (also called hot-potato routing [2]). The resulting small
degradation of network throughput results in reduction of en-
ergy consumption, router complexity, and on-chip area [18].

Contributions: We first outline characteristic features of
on-chip networks, and discuss their impact on the result-
ing networking problems. We then study congestion control
in bufferless NoCs and show that such networks experience
congestion in fundamentally different ways than traditional
networks which requires different application-aware metrics
must be applied. We develop and evaluate a new congestion
control algorithm, yielding up to 28% (19%) improvement
in a 16-core (64-core) mesh NoC for a rich set of workloads.

2. BACKGROUND
NoCs in Multi-Core Architectures: In a chip multipro-

cessor (CMP) architecture, the NoC generally connects the
processor nodes and their private caches with the shared cache
banks and memory controllers (see Figure 1). A NoC might
also carry other control traffic, such as interrupt requests, but
it primarily exists to service cache miss requests. In the ar-
chitecture, a high-speed router exists at each node, which
connects the core to its neighbors by links. The width of a
link varies, but 128 bits is a typical value. Packets are par-
titioned into flits, units that are the width of a link and thus
serve as the atomic unit of traffic. Links typically have a
latency of only one or two cycles, and are pipelined.

A variety of on-chip topologies have been proposed in the
literature (e.g., [16, 15, 10]), but the most typical topology is
the 2D mesh [6], which is implemented in several commer-
cial [24, 23] and research prototype [22, 12, 13] many-core
processors. In this topology, each router has 5 input and
5 output channels/ports: one from each neighbor and one
from the network interface (NI). Furthermore, depending on
the router architecture and the arbitration policies (i.e., the
number of pipelined arbitration stages), each packet spends
between 1 cycle (in a highly optimized best case [18]) and 4
cycles at each router before being forwarded to the next link.

Bufferless NoCs and Routing: The question of buffering

is central to networking [1]. In NoCs, it was shown to be fea-
sible to go completely bufferless and eliminate buffers from
NoC routers: application performance degrades minimally,
while power consumption reduces by 20-40%, on-chip area
can be reduced by 75%, and implementation complexity also
reduces [18]. The general system architecture does not differ
from buffered NoCs. However there are two key differences
in the NoC design: a lack of buffers at the routers, and con-
sequently, injection and routing algorithms in the network.
Fig. 1 gives an example of injection, routing and arbitration.

Like in a buffered NoC, injection and routing in a buffer-
less NoC (BLESS, for short) happen synchronously across
all cores on a clock cycle. When a core must send a packet
to another core, (e.g., S1 to D at T0 in Figure 1), the core
is able to inject each flit of the packet into the network as
long as one of its output links is free. Injection requires a
free output link since there is no buffer to hold the packet in
the router. If no output link is free, the flit remains queued
at the processor level. An age field is initialized to 0 in the
header and incremented at each hop. A flit is then routed
to a neighbor based on the routing algorithm (X,Y-Routing
in our example), and the arbitration policy. With no buffers,
flits must pass through the router pipeline without stalling or
waiting; deflection is used to resolve port-contention when
two or more flits request the same output port.

Flits are arbitrated to output ports based on direction and
age through the Oldest-First arbitration policy [18]. If flits
contend for the same output port, (in our example, the two
contending for the link to D at time T2), ages are compared,
and the oldest flit obtains the port. The other contending
flit(s) are deflected (misrouted [6]) – e.g., the flit from S2 in
our example. Ties in age are broken by other header fields to
form a total order among all flits in the network. Because a
node in a 2D mesh network has as many output ports as input
ports, routers never block. Though some designs [11] drop
packets under contention, this design does not, and therefore
ACKs are not needed. Despite simplicity, the policy is very
efficient in terms of performance, and is livelock-free [18].

Bufferless routing by itself is not novel: It is frequently
known as hot-potato routing [2]. However, it is particularly
suited for NoCs, and in this context, presents a set of chal-
lenges distinct from those in traditional networks.

3. CHARACTERISTICS OF NOCS
With an understanding of NoC and bufferless NoC design,

an important question that remains is: in what sense do on-
chip networks differ from other types of networks? These
differences provide insight into what makes a NoC interest-
ing from a networking research point of view, and helps to
guide the design of our congestion control mechanism. We
present key properties of both general and bufferless NoCs.

NoC Architecture Properties: Several characteristics are
driven by chip area/space considerations, implementation com-
plexity, and program behavior:
• Topology: The topology is statically known, and usually

2

very regular (e.g., a mesh). A change in topology will
impact various aspects, such as routing and traffic-load.

• Latency: Links and (heavily-pipelined) routers have la-
tency much lower than traditional networks: 1-2 cycles.

• Routing: Arbitration and routing logic are designed for
minimal complexity and low latency, because these router
stages typically must take no more than a few cycles.

• Coordination: Global coordination and network-wide
optimizations are possible and often less expensive due
to a relatively small known topology, and low latency.

• Links: Links are expensive, both in terms of hardware
complexity and on-chip area. Therefore, links cannot
easily be overprovisioned like in other types of networks.

• Latency vs. Bandwidth: This tradeoff is very different
in NoCs. Low latency is important for efficient opera-
tion, and typically the allowable window of in-flight data
is much smaller than in a large-scale network.

• Network Flows: Because many architectures will split
the shared cache across all nodes a program will typ-
ically send traffic to all nodes. Multithreaded programs
also exhibit complex communication patterns. There, the
concept of a “network flow” is removed.

• Traffic Patterns: Private cache miss behavior of appli-
cations, including locality-of-reference, phase behavior
with local and temporal bursts, and importantly, self-
throttling, drive traffic patterns in a NoC.

• Throughput: NoCs lack a direct correlation between
network throughput, and overall system throughput. As
we will show (§4.2), for the same network throughput,
changing which L1 cache misses are serviced in the net-
work can change system throughput by up to 18%.

Bufferless NoC Architecture Properties: in addition to the
above, the bufferless NoC we study has unique properties
driven by the routing, arbitration, and the lack of buffers:
• Loss: Given that a packet can only be injected if there is

at least one free output port, and is otherwise guaranteed
a link once in the network, the network is drop-less.

• Retransmission: Without packet loss, there is no need
for a retransmission scheme. Once a packet enters the
network, it is guaranteed live-lock free delivery [18].

• (N)ACKs: In a dropless network, ACKs or NACKs are
not needed, which would only utilize scarce link resources.

• In-Network Latency: In-network latency in a bufferless
NoC is very stable and low, even under high congestion
with deflections (§4). Flits are quickly routed in the net-
work, without incurring delay in router buffers.

• Injection Latency: Unlike in traditional networks, the
injection latency (time from head-of-queue to entering
the network) can be significant (§4). Without a free out-
put link, the design will prevent a core from injecting.

4. CONGESTION IN BUFFERLESS NOCS
The different NoC properties result in many challenges

with regard to classical networking problems in NoCs. One
particularly important and interesting such networking prob-
lem is congestion control for bufferless NoCs. Intuitively,
bufferless routing seems a promising design for moderate-
to-low network utilizations; however, a bufferless network
saturates more quickly than a buffered NoC. Here, we show
that congestion has fundamentally different consequences in
NoCs and that application-aware solutions are required.

4.1 Effect of Congestion
In order to understand the effect of congestion in a buffer-

less NoC, we explore how congestion affects system per-
formance at both the network and application levels. We
simulate 700 real-application workloads in a 4x4 NoC (see
methodology in §6) while examining application behavior.
Our workloads span a range of network utilizations exhibited
by real applications to demonstrate the network and system
performance under various levels of congestion.

Effect of Congestion at the Network-Level: Figure 2(a)
shows average network latency in each of the workloads.
Notice how per-flit network latency generally remains sta-
ble, even when the network is under heavy load. This is
in stark contrast to traditional buffered networks, in which
the per-packet network latency increases significantly as the
load in the network increases. The reason is that in buffer-
less NoCs, deflection routing shifts the effect of congestion
from within the network to network admission: Due to high
congestion, it may no longer be possible to efficiently inject
packets into the network, but once injected, every packet will
reach its destination without too much delay. Thus, network
latency is not the proper metric for detecting congestion and
should not be the target of improvement under congestion.
Instead, injection starvation is the critical measure. Star-
vation occurs when injection is blocked by high network
utilization, because in-flight traffic takes precedence in the
router. We define the starvation rate at a given node as the
fraction of cycles in which injection is blocked in this way:
σ = 1

C ∑
C
i starved(i) ∈ [0,1]. Figure 2(b) shows that starva-

tion rate grows superlinearly with network utilization.
Effect of Congestion on Application-level Throughput:

Given that the NoC is an integral component of a complete
multicore system, it is important to evaluate the effect of
congestion across the layers, specifically at the application
layer. We define system throughput as the application-level
instruction throughput: for N cores, System Throughput =
∑

N
i IPCi, where IPCi gives instructions per cycle at core i.
To show the effect of congestion on the application-level

throughput, we take a network-heavy sample workload and
throttle/unthrottle all applications, to observe the full range
of network congestion. Fig. 2(c) plots the resulting system
throughput as a function of average network utilization. The
key observation is that network utilization does not reach 1,
i.e., the network is never fully saturated even when unthrot-
tled. The reason is that applications running on cores are
naturally self-throttling: A thread running on a core can only
inject a relatively small number of requests into the network
before stalling to wait for the missing replies. Once stalled, a

3

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1av
g.

 n
et

 la
te

nc
y

(c
yc

le
s)

average network utilization

(a) Avg. net. latency in cycles (Each point repre-
sents one of the 700 workloads).

0.0

0.1

0.2

0.3

0.4

0.5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

st
ar

va
tio

n
ra

te

average network utilization

(b) As the network becomes more utilized, the
overall starvation rate rises significantly.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1in
st

ru
ct

io
n

th
ro

ug
hp

ut

average network utilization

unthrottling applications

(c) We unthrottle applications in a 4x4 network to
show suboptimal performance when run freely.

Figure 2: The effect of congestion at the network and application level.

0

0.5

1

1.5

2

overall mcf gromacs

A
v
g
.
In
s.
 T
h
ro
u
g
h
p
u
t

Application

baseline
throttle grom
throttle mcf

Figure 3: System throughput with selective throttling.

thread cannot inject further requests. This self-throttling na-
ture of applications, in combination with stable in-network
packet latencies, implies that bufferless NoCs do not exhibit
a congestion collapse even at the highest possible load.

While the consequences are not catastrophic (e.g., col-
lapse), static and homogeneous throttling across all cores
does not yield the best possible improvement. As we will
show, more significant system throughput improvements can
be achieved by dynamically throttling specific applications
based on the relative benefit they get from injecting into the
network. This is the key to our mechanism.

Key Findings: Starvation rate, not network latency, in-
dicates congestion. Letting applications run freely is sub-
optimal, albeit will not cause congestion collapse.

4.2 Need for Application Awareness
Application-level throughput decreases as network con-

gestion increases. Therefore, like in traditional networks,
applications should be throttled to reduce the level of con-
gestion in the network. However, which applications we
throttle can significantly impact per-application and overall
system performance. To illustrate this, we have constructed
a workload in a 4×4-mesh NoC that consists of 8 instances
each of mcf and gromacs, which are memory-intensive
and non-intensive benchmarks, respectively [21]. We run
the workload with no throttling, and then throttle each appli-
cation in turn by 90% (injection blocked 90% of the time),
and examine per-application and overall system throughput.

The results provide key insights (Fig. 3). First, which
application is throttled has a significant impact on overall
system throughput. When gromacs is throttled, the over-
all system throughput drops 9%. However, when mcf is
throttled by the same rate, the overall system throughput in-
creases by 18%. Second, instruction throughput is not an ac-
curate determinant for whom to throttle. Although mcf has
lower instruction throughput than gromacs, overall system

throughput increases when mcf is throttled, with little ef-
fect on mcf (-3%). Third, applications respond differently
to network throughput variations. When mcf is throttled,
its instruction throughput decreases by 3%; however, when
gromacs is throttled by the same rate, its throughput de-
creases by 14%. Likewise, mcf benefits little from the in-
creased network throughput when gromacs is throttled, but
gromacs benefits greatly (25%) when mcf is throttled.

The reason for this behavior is that each application has
a different L1 cache miss rate, and thus requires a certain
volume of traffic to retire a given instruction sequence; this
measure depends wholly on the behavior of the program’s
memory accesses. Extra latency for a single flit from an ap-
plication with a high L1 miss rate will not have as much rela-
tive impact on forward progress as the same delay of a flit in
an application with few L1 misses, since that flit represents a
greater fraction of forward progress in the latter application.
Such awareness has been leveraged in buffered NoCs [8].

Key Finding: Bufferless NoC congestion control needs
application-layer awareness to determine whom to throttle.

Instructions-per-Flit: The above discussion implies that
not all flits are created equal. We define Instructions-per-
Flit (IPF) as the ratio of instructions retired in a given pe-
riod by an application I to flits of traffic F associated with
the application during that period: IPF = I/F . For a given
code sequence, set of inputs, and system parameters, IPF is
a fixed value that depends only on the L1 miss rate. It is
independent of the congestion in the network and the rate
of execution of the application, and is thus a stable measure
in a shared system. Table 1 shows that IPF values (for a set
of SPEC CPU2006 benchmarks [21]) can vary considerably:
mcf, a memory-intensive benchmark produces slightly less
than 2 flits of traffic for every instruction retired (IPF=0.58),
whereas povray yields an IPF of over 1000, more than
2000 times greater. The latency of a single flit in this high-
IPF application thus has greater impact on performance.

Fig. 3 illustrates this: mcf’s low IPF value (0.583) indi-
cates that it can be heavily throttled with little impact on its
throughput (-3% @ 90% throttling). It also gains little from
additional network throughput (e.g., <+1% when gromacs
is throttled). However, gromacs’ higher IPF value implies
that its performance will suffer if it is throttled (-10%), but
can gains from additional network throughput (+25%).

Key Finding: The IPF metric enables application-aware-
ness and can inform per-application throttling decisions.

4

Benchmark IPF Benchmark IPF Benchmark IPF
mcf 0.583 omnetpp 3.150 wrf 69.75
leslie3d 0.814 cactusADM 4.905 sjeng 134.15
soplex 1.186 bzip2 6.281 gcc 155.18
libquantum 1.252 astar 6.376 namd 168.08
lbm 1.429 hmmer 9.362 calculix 253.23
milc 1.751 gromacs 12.41 tonto 256.53
GemsFDTD 2.267 h264ref 14.64 perlbench 425.19
sphinx3 2.253 dealII 37.99 povray 1189.8
xalancbmk 2.396 gobmk 60.73

Table 1: IPF (Instructions-per-Flit) values for our set of workloads.

5. CONGESTION CONTROL MECHANISM
We propose an interval-based congestion control algorithm

that periodically (every 100,000 cycles): 1) detects conges-
tion based on starvation rates in the network, 2) determines
IPF of applications, 3) if the network is congested, throttles
the appropriate applications based on the IPF metric. A key
difference to existing congestion control mechanisms (say,
TCP or XCP [14]) is that ours is centrally coordinated. This
is in fact is cheaper in NoCs: a distributed algorithm would
require more complex computations and indirect informa-
tion gathering, whereas a central controller reduces redun-
dancy and uses directly-tracked statistics to compute IPF.

When to Throttle: As described in §4, starvation rate is
a superlinear function of network congestion (Fig. 2(b)). We
use starvation rate (σ) as a per-node indicator of congestion
in the network. Node i is congested if:

σi > min(βstarve +αstarve/IPFei,γstarve) (1)

where α is a scale factor, and β and γ are lower and upper
bounds, respectively, on the threshold (we use αstarve = 0.2,
βstarve = 0.35 and γstarve = 0.8 in our evaluation, determined
empirically). It is important to factor in IPF since network-
intensive applications will naturally have higher starvation
due to higher injection rates. Note that we use an IPF es-
timate, IPFe, based on injection queue length, since queue
length increases as starvation (due to congestion) increases.
Finally, throttling is active if at least one node is congested.
Active throttling mode picks only certain nodes to throttle,
and scales throttling rate according to intensity.

Whom to Throttle: When throttling is active, a node is
throttled if its intensity (as by IPF) is above average. Since
we run a central coordination algorithm, knowing the mean
of all queue lengths is possible without any sort of distributed
averaging or estimation. The Throttling Criterion is:

If throttling is active AND IPFi > mean(IPF).
The simplicity of this rule can be justified by our observa-

tion that IPF in most workloads tend to be fairly widely dis-
tributed: there are memory-intensive applications and CPU-
bound applications. We find that in most cases, the separa-
tion between application classes is clean, and so the addi-
tional complexity of a more intelligent rule is not justified.

Determining Throttling Rate: We throttle the chosen
set of applications proportional to their application intensity.
The throttling rate, the fraction of cycles in which a node
cannot inject, is computed as follows:

R = min(βrate +αrate/IPF,γrate) (2)

Network topology 2D mesh, 4x4 or 8x8 size
Routing algorithm FLIT-BLESS [18] (example in §2)
Router (Link) latency 2 (1) cycles
Core model Out-of-order
Issue width 3 insns/cycle, 1 mem insn/cycle
Instruction window size 128 instructions
Cache block 32 bytes
L1 cache private 128KB, 4-way
L2 cache shared, distributed, perfect cache
L2 address mapping Per-block interleave, XOR mapping

Table 2: System Parameters for Evaluation

where IPF is used as a measure of application intensity, and
α , β and γ set the scaling factor, lower bound and upper
bound respectively, as in the starvation threshold formula
above. Empirically, we determine αrate = 0.30, βrate = 0.45
and γrate = 0.75 work well, and are used in our evaluation.

6. EVALUATION
We use a closed-loop model of a complete network-pro-

cessor-cache system, so that the system is self-throttling as
in a real multi-core system (parameters in Table 2). We eval-
uate 875 multiprogrammed workloads (700 16-core, 175 64-
core), used in desktop, workstation, and scientific computing
and commonly used in the architecture community for eval-
uation [21]. We classify the applications (Table 1) into three
categories based on their IPF values: H=Heavy, M=Medium,
L=Light and systematically ensure a balanced set of multi-
programmed workloads, which is important for evaluation of
many-core systems (e.g., for cloud computing [13]). To do
this, seven categories are created based on randomly mixing
applications of specific intensities: {H,M,L,HML,HM,HL,ML}.

System Throughput Results: We first present the effect
of our mechanism on overall system/instruction throughput
(as defined in §4.1) for both 4x4 and 8x8 systems. To present
a clear view of the improvements at various levels of network
load, we evaluate gains in overall system throughput plotted
against the average network utilization (measured without
throttling enabled). Fig. 4 presents a scatter plot that shows
the percentage gain in overall system throughput with our
mechanism in each of the 875 workloads on the 4x4 and 8x8
system. The maximum (average) performance improvement
under congestion (e.g., load >0.7) is 27.6% (14.7%).

Fig. 4(b) shows the maximum, average, and minimum
system throughput gains on each of the workload categories.
The highest average and maximum improvements are seen
when all applications in the workload have High or High/
Medium intensity. As expected, our mechanism provides lit-
tle to no improvement when all applications in the workload
have Low or Medium/Low intensity, because in such cases,
the network is adequately provisioned for the demanded load.

Improvement in Network-level Admission: Fig. 4(c)
shows the cumulative distribution function of the 4x4 work-
loads’ average starvation rate when the baseline average net-
work utilization is greater than 60%, to provide insight into
the effect of our mechanism on starvation when the network
is likely to be congested. Using our mechanism, only 36%
of the congested 4x4 workloads have an average starvation

5

-5
 0
 5

 10
 15
 20
 25
 30

0.0 0.2 0.4 0.6 0.8 1.0

%
 I

m
pr

ov
em

en
t

baseline average network utilization

(a) 4x4 and 8x8 All Workloads.

-5
 0
 5

 10
 15
 20
 25
 30

All
H HM HM

L
M HL M

L
L%

 I
m

pr
ov

. (
m

in
/a

vg
/m

ax
)

4x4
8x8

(b) Workload Category Breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Average Starvation Rate

CControl
Baseline

(c) CDF of Starvation Rates.

Figure 4: Percentage improvement in overall system throughput and starvation provided by our mechanism for all workloads (4x4 & 8x8).

-5

 0

 5

 10

 15

 20

0.0 0.2 0.4 0.6 0.8 1.0

W
S

%
 I

m
pr

ov
em

en
t

baseline average network utilization

Figure 5: Percentage improvements in weighted speedup.

rate greater than 30% (0.3), whereas without our mechanism
61% have a starvation rate greater than 30%.

Effect on Weighted Speedup: In addition to instruction
throughput, a common metric for evaluation is weighted
speedup [20], defined as WS = ∑

N
i

IPCi,shared
IPCi,alone

, where IPCi,shared

and IPCi,alone are the instructions per cycle rates for appli-
cation i when run together with other applications and when
run alone, respectively. WS is N in an ideal N-node system
with no interference, and drops as application performance is
degraded due to network contention. This metric takes into
account that different applications have different “natural”
execution speeds; maximizing it requires maximizing the
rate of progress – compared to this natural execution speed –
across all applications in the entire multiprogrammed work-
load. In contrast, a mechanism can maximize instruction
throughput by unfairly slowing down low-IPC applications.
Figure 5 shows weighted speedup improvements by up to
17.2% (18.2%) in the 4x4 and 8x8 workloads respectively.

Key Finding: Our mechanism improves performance up
to 27.6%, reduces starvation, and improves weighted speedup.

7. SUMMARY & CONCLUSIONS
This paper studies congestion control in on-chip buffer-

less networks and has shown such congestion to be funda-
mentally different from those in other networks (e.g., lack of
congestion collapse). We develop an application-aware con-
gestion control algorithm and show significant improvement
in application-level system throughput on a wide variety of
real workloads. More generally, NoCs are bound to become
a critical system resource in many-core processors, shared
by diverse applications. Finding solutions to networking
problems in NoCs is paramount to effective many-core com-
puting, and we believe the networking research community
can and should weigh in on these challenges.

8. ACKNOWLEDGMENTS
We acknowledge the support of Gigascale Systems Re-

search Center, Intel, and CyLab. This research was partially
supported by an NSF CAREER Award, CCF-0953246.

9. REFERENCES
[1] Appenzeller et al. Sizing router buffers. SIGCOMM, 2004.
[2] P. Baran. On distributed communications networks. IEEE

Trans. on Comm., 1964.
[3] L. Benini and G. D. Micheli. Networks on chips: A new SoC

paradigm. Computer, 35:70–78, Jan 2002.
[4] T. Bjerregaard et al. A survey of research and practices of

network-on-chip. ACM Computing Surveys, 2006.
[5] S. Borkar. Thousand core chips: a technology perspective.

DAC-44, 2007.
[6] W. Dally and B. Towles. Principles and Practices of

Interconnection Networks. Morgan Kaufmann, 2004.
[7] W. J. Dally and B. Towles. Route packets, not wires:

On-chip interconnection networks. DAC-38, 2001.
[8] R. Das et al. Application-aware prioritization mechanisms

for on-chip networks. MICRO-42, 2009.
[9] P. Gratz, C. Kim, R. McDonald, and S. Keckler.

Implementation and evaluation of on-chip network
architectures. ICCD, 2006.

[10] B. Grot, J. Hestness, S. Keckler, and O. Mutlu. Express cube
topologies for on-chip interconnects. HPCA-15, 2009.

[11] M. Hayenga et al. Scarab: A single cycle adaptive routing
and bufferless network. MICRO-42, 2009.

[12] Y. Hoskote et al. A 5-ghz mesh interconnect for a teraflops
processor. IEEE MICRO, 2007.

[13] Intel Corporation. Single-chip cloud computer.
http://techresearch.intel.com/articles/
Tera-Scale/1826.htm.

[14] D. Katabi, M. Handley, and C. Rohrs. Internet congestion
control for future high bandwidth-delay product
environments. SIGCOMM, 02.

[15] J. Kim, W. Dally, S. Scott, and D. Abts. Technology-driven,
highly-scalable dragonfly topology. ISCA-35, 2008.

[16] J. Kim et al. Flattened butterfly topology for on-chip
networks. IEEE Computer Architecture Letters, 2007.

[17] A. Mohammad et al. DCTCP: Efficient packet transport for
the commoditized data center. SIGCOMM, 2010.

[18] T. Moscibroda and O. Mutlu. A case for bufferless routing in
on-chip networks. ISCA-36, 2009.

[19] J. Owens et al. Research challenges for on-chip
interconnection networks. IEEE MICRO, 2007.

[20] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. ASPLOS-9, 2000.

[21] Standard Performance Evaluation Corporation. SPEC
CPU2006. http://www.spec.org/cpu2006.

[22] M. Taylor, J. Kim, J. Miller, and D. Wentzlaff. The Raw
microprocessor: A computational fabric for software circuits
and general-purpose programs. IEEE MICRO, Mar 2002.

[23] Tilera Corporation. Tilera announces the world’s first
100-core processor with the new tile-gx family.
http://www.tilera.com/news_&_events/
press_release_091026.php.

[24] D. Wentzlaff et al. On-chip interconnection architecture of
the tile processor. IEEE Micro, 27(5):15–31, 2007.

6

